ON THE EXISTENCE OF \(c \)-POINTS IN \(\beta \mathbb{N} \setminus \mathbb{N} \)

NEIL HINDMAN

R. S. Pierce has asked in [2] whether it is possible to show, without using the continuum hypothesis, that there are points of \(\beta \mathbb{N} \setminus \mathbb{N} \) which lie simultaneously in the closure of three pairwise disjoint open sets. Such points are called, in his terminology, 3-points of \(\beta \mathbb{N} \setminus \mathbb{N} \). In general, for any cardinal number \(n \), and for any topological space \(X \), a point \(x \) in \(X \) is called an \(n \)-point if it lies in the closure of each of \(n \) pairwise disjoint open subsets of \(X \).

It is shown here in §1, as a corollary to a more general theorem, that, without appeal to the continuum hypothesis, not only are there 3-points in \(\beta \mathbb{N} \setminus \mathbb{N} \), but in fact there are \(c \)-points in \(\beta \mathbb{N} \setminus \mathbb{N} \). It is further shown in §2 that, if the continuum hypothesis is assumed, each point of \(\beta \mathbb{N} \setminus \mathbb{N} \) is a \(c \)-point. These results seem particularly striking since \(\beta \mathbb{N} \setminus \mathbb{N} \) is an \(F' \)-space, i.e., disjoint cozero sets in \(\beta \mathbb{N} \setminus \mathbb{N} \) have disjoint closures. (A cozero set in a space \(X \) is a preimage by a continuous real valued function of an open set.) It is well known that if \(\alpha \) is any cardinal greater than \(c \) then there do not exist \(\alpha \)-points in \(\beta \mathbb{N} \setminus \mathbb{N} \), since in fact, if \(\mathcal{U} \) is a collection of pairwise disjoint open sets in \(\beta \mathbb{N} \setminus \mathbb{N} \) then \(\left| \mathcal{U} \right| \leq c \).

1. Results without the continuum hypothesis. Let \(A^\ast \) be the ultrafilter on a discrete space \(D \) associated with the point \(p \) in \(\beta D \). The ultrafilter \(A^\ast \) on \(D \) is called uniform if each element of \(A^\ast \) has cardinality \(|D| \). Define \(\mu D = \{ p \in \beta D : A^\ast \) is uniform \}. Note that \(\mu N = \beta \mathbb{N} \setminus \mathbb{N} \).

We include here for completeness the following facts about \(\beta D \) for discrete \(D \). Our notation and general point of view are those of the Gillman and Jerison textbook [1], to which the reader is referred for proofs and additional discussion. For each \(Z \subseteq D \), we have \(cl_D Z = \{ p \in \beta D : Z \subseteq A^\ast \} \). Basic neighborhoods of a point \(p \) in \(\beta D \setminus D \) are of the form \((cl_D Z) \setminus D \) where \(Z \subseteq A^\ast \).

1.1 Lemma. Let \(D \) be a discrete space of cardinality \(m \), where \(m \geq \aleph_0 \). Let \(\mathcal{A} \) be an infinite collection of subsets of \(D \) with \(|A| = m \) for each.
278 NEIL HINDMAN

A in \mathfrak{A} and with $|A_1 \cap A_2| < m$ for each distinct pair of elements A_1, A_2 of \mathfrak{A}. Then there is a uniform ultrafilter A^p on D such that $|\{A \in \mathfrak{A} : |Z \cap A| = m\}| = |\mathfrak{A}|$ for each Z in A^p.

Proof. For each A in \mathfrak{A} choose x_A in $\text{cl}_D A \cap \mu D$ and let $B = \{x_A : A \in \mathfrak{A}\}$. Now if $A_1 \neq A_2$ then $x_{A_1} \neq x_{A_2}$ since $x_{A_{\mathfrak{A}}}$ and $x_{A_{\mathfrak{A}}}$ are elements of μD and $|A_1 \cap A_2| < m$. Thus $|B| = |\mathfrak{A}|$. Now μD is closed in βD, hence is compact. (For if $p \in \beta D \setminus \mu D$ then there exists Z in A^p with $|Z| < m$, and $\text{cl}_D Z$ is a neighborhood of p missing μD.) Clearly then there is a point p in μD such that each neighborhood of p contains $|\mathfrak{A}|$ elements of B. (For if not, pick a neighborhood of each point of μD which contains less than $|\mathfrak{A}|$ elements of B. From the existence of a finite subcover it follows immediately that $|Z| < |\mathfrak{A}|$, a contradiction.) But then A^p is the desired ultrafilter, for if $|Z \cap A| < m$ then $x_A \in \text{cl}_D Z \cap \mu D$.

It follows from Theorem 7 of [3] that if m is a cardinal number such that $2^n \leq m$ for all $n < m$ and if D is a set of cardinality m, then there is a family \mathfrak{A} of subsets of D, each of cardinality m such that $|\mathfrak{A}| = 2^m$ and $|A_1 \cap A_2| < m$ for each pair A_1, A_2 of elements of \mathfrak{A}. Note that if the generalized continuum hypothesis holds then each infinite cardinal m has the above mentioned property. At any rate there are cofinally many cardinals with this property. (For let n_0 be any cardinal and define inductively $n_{i+1} = 2^{n_i}$. Then $m = \sup \{n_i : i \in \omega_0\}$ has the given property and is greater than n_0.)

1.2 Lemma. Let D be a discrete space of cardinality m where $2^n \leq m$ for all $n < m$. Let \mathfrak{A} be a collection of subsets of D as given above. Let A^p be a uniform ultrafilter as given by Lemma 1.1, the elements Z_α of A^p being indexed by the ordinals less than 2^m. Then it is possible to choose, for each $\alpha < 2^m$, a subset X_α of Z_α so that $|X_\alpha| = m$ and so that $|X_\alpha \cap X_\gamma| < m$ whenever $\alpha < \gamma < 2^m$.

Proof. For Z_1 pick A_1 in \mathfrak{A} such that $|Z_1 \cap A_1| = m$. Assume that for $\sigma < \alpha$ we have chosen $A_\sigma \in \mathfrak{A}$ such that $|Z_\sigma \cap A_\sigma| = m$ and $A_\sigma \neq A_\gamma$ for all $\gamma < \sigma$. Now $|\{A \in \mathfrak{A} : |A \cap Z_\sigma| = m\}| = 2^m$ and $\alpha < 2^m$ so there is $A_\alpha \in \mathfrak{A}$ such that $|A_\alpha \cap Z_\alpha| = m$ and $A_\sigma \neq A_\alpha$ for all $\sigma < \alpha$. Let $X_\alpha = A_\alpha \cap Z_\alpha$.

1.3 Theorem. Let D be a discrete space of cardinality m where $2^n \leq m$ for all $n < m$. Then there is a 2^m-point (i.e. a point in the closure of each of 2^m pairwise disjoint open sets) in μD.

Proof. Let \mathfrak{A}, $A^p = \{Z_\alpha\}_{\alpha < 2^m}$ and $X_\alpha \subset Z_\alpha$ be as in Lemma 1.2. Now $|X_\alpha| = m$ so there is a collection $\{X_{\alpha r}\}_{r < 2^m}$ of subsets of X_α.
such that \(|X_{\tau}| = m\) for all \(\tau < 2^m\) and such that \(|X_{\tau} \cap X_{\sigma}| < m\) if \(\tau \neq \sigma\). For each \(\tau < 2^m\) let \(U_\tau = (\bigcup_{\tau < \sigma} \text{cl}_{\beta \mathbb{D}} X_{\sigma}) \cap \mu \mathbb{D}\). Recall that \(\text{cl}_{\beta \mathbb{D}} X_{\tau}\) is open in \(\beta \mathbb{D}\), so that \(U_\tau\) is open. We assert that the family \(\{U_\tau\}_{\tau < \sigma}\) is as desired. That is, it is a pairwise disjoint family and the closure of each member contains \(p\). Suppose first that \(\tau \neq \sigma\) and \(q \in U_\tau \cap U_\sigma\). Then there is a pair \(\alpha_1, \alpha_2\) such that \(q \in \text{cl}_{\beta \mathbb{D}} X_{\alpha_1} \cap \text{cl}_{\beta \mathbb{D}} X_{\alpha_2} \cap \mu \mathbb{D}\). If \(\alpha_1 \neq \alpha_2\) then \(X_{\alpha_1} \cap X_{\alpha_2} \subseteq X_{\alpha_1} \cap X_{\alpha_2}\) and \(|X_{\alpha_1} \cap X_{\alpha_2}| < m\). If \(\alpha_1 = \alpha_2\) then \(|X_{\alpha_1} \cap X_{\alpha_2}| < m\). So in fact, in either case \(|X_{\alpha_1} \cap X_{\alpha_2}| < m\). But since \(q \in \text{cl}_{\beta \mathbb{D}} X_{\alpha_1} \cap \text{cl}_{\beta \mathbb{D}} X_{\alpha_2}\) we have that \(X_{\alpha_1} \cap X_{\alpha_2} \in A_0\), contrary to the fact \(q \in \mu \mathbb{D}\).

Finally let \(Z_\alpha \in A_0\). Now \(\text{cl}_{\beta \mathbb{D}} Z_\alpha \cap \mu \mathbb{D}\) is a basic neighborhood of \(p\) in \(\mu \mathbb{D}\) so we need only show that \(\text{cl}_{\beta \mathbb{D}} Z_\alpha \cap \mu \mathbb{D} \cap U_\tau \neq \emptyset\) for all \(\tau < 2^m\).

Since \(|X_{\tau}| = m\) and \(X_{\tau} \subseteq X_{\alpha} \subseteq Z_\alpha\) it follows that \(|X_{\tau} \cap Z_\alpha| = m\), so there is \(q \in \text{cl}_{\beta \mathbb{D}} X_{\alpha} \cap \text{cl}_{\beta \mathbb{D}} X_{\tau} \cap \mu \mathbb{D} \cap \text{cl}_{\beta \mathbb{D}} Z_\alpha \cap U_\tau \cap \mu \mathbb{D} \neq \emptyset\).

1.4 Corollary. There is a c-point in \(\beta \mathbb{N} \setminus \mathbb{N}\).

Proof. \(2^n \leq \aleph_0\) for all \(n < \aleph_0\) and \(\beta \mathbb{N} \setminus \mathbb{N} = \mu \mathbb{N}\).

2. Results assuming the continuum hypothesis. We show here that, if the continuum hypothesis is assumed, not only do there exist c-points of \(\beta \mathbb{N} \setminus \mathbb{N}\) as shown above, but in fact each point of \(\beta \mathbb{N} \setminus \mathbb{N}\) is a c-point of \(\beta \mathbb{N} \setminus \mathbb{N}\).

2.1 Lemma. Assume the continuum hypothesis and let \(A^\mathbb{N}\) be a free (i.e. uniform) ultrafilter on \(\mathbb{N}\). Order the elements of \(A^\mathbb{N}\) by the ordinals less than \(\omega_1\). Then there is a choice of \(X_\alpha \in Z_\alpha\) for each \(Z_\alpha \in A^\mathbb{N}\) such that \(|X_\alpha| = \aleph_0\) and \(|X_\alpha \cap X_\beta| < \aleph_0\) if \(\alpha \neq \beta\).

Proof. Let \(X_1\) be any infinite subset of \(Z_1\) which is not in \(A^\mathbb{N}\). Let \(\alpha < \omega_1\) and assume that for each \(\sigma < \alpha\) we have chosen \(X_\sigma \subseteq Z_\sigma\) so that \(X_\sigma \in A^\mathbb{N}\) and \(|X_\sigma \cap X_\gamma| < \aleph_0\) for all \(\gamma < \sigma\). Let \(B = \{\sigma < \alpha\} : |X_\sigma \cap Z_\alpha| = \aleph_0\)\. If \(B\) is finite then \((Z_\alpha \setminus \bigcup_{\sigma \in B} X_\sigma) \in A^\mathbb{N}\) and we may let \(X_\alpha\) be any infinite subset of \((Z_\alpha \setminus \bigcup_{\sigma \in B} X_\sigma)\) which is not in \(A^\mathbb{N}\). Then for \(\sigma < \alpha\) we have \(|X_\sigma \cap X_\alpha| < \aleph_0\). If \(B\) is infinite it is countable so we may write \(B = \{\sigma_\alpha\}^{\omega_1}_{\alpha=1}\). Let \(x_\alpha \in (X_{\sigma_\alpha} \cap Z_\alpha) \setminus \bigcup_{j < k} X_{\sigma_j}\). This is possible since \(|X_{\sigma_\alpha} \cap Z_\alpha| = \aleph_0\) and \(|X_{\sigma_j} \cap X_{\sigma_k}| < \aleph_0\) for \(j < k\). Let \(X_\alpha\) be any infinite subset of \(|x_\alpha|^{\omega_1}_{\alpha=1}\) which is not an element of \(A^\mathbb{N}\). Then \(|X_\alpha \cap X_{\sigma_\alpha}| \leq k < \aleph_0\) and if \(\sigma \in B\) then \(|X_{\sigma} \setminus X_\alpha| \leq |X_{\sigma} \cap Z_\alpha| < \aleph_0\).

2.2 Theorem. Assume the continuum hypothesis and let \(p \in \beta \mathbb{N} \setminus \mathbb{N}\). Then \(p\) is a c-point of \(\beta \mathbb{N} \setminus \mathbb{N}\).

Proof. Let \(X_\alpha \subseteq Z_\alpha\) be as in Lemma 2.1 for each \(Z_\alpha\) in \(A^\mathbb{N}\). The rest of the proof is the same as that of Theorem 1.3.
3. Remarks. It is an easy consequence of Theorem 1 of [3] that for any discrete space D of cardinality m where $m \geq \aleph_0$, μD does not have n-points for any $n > 2^m$ since in fact μD does not have n pairwise disjoint open sets.

It is not possible to directly generalize the proof of Lemma 2.1 to obtain the corresponding statement about μD for discrete spaces D of higher cardinality. Thus the following question remains open: Even assuming the generalized continuum hypothesis, is each point of D a $2^{1^{st}}$-point for an infinite discrete space D?

The author has also been unable to determine if the continuum hypothesis is in fact a necessary condition for Theorem 2.2.

References

Wesleyan University