Continua not an inverse limit with a single bonding map on a polyhedron
HTML articles powered by AMS MathViewer
- by J. W. Rogers
- Proc. Amer. Math. Soc. 21 (1969), 281-283
- DOI: https://doi.org/10.1090/S0002-9939-1969-0248758-1
- PDF | Request permission
References
- James J. Andrews, A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic, Proc. Amer. Math. Soc. 12 (1961), 333–334. MR 120607, DOI 10.1090/S0002-9939-1961-0120607-4
- C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653–659. MR 110999
- M. K. Fort Jr. and Jack Segal, Local connectedness of inverse limit spaces, Duke Math. J. 28 (1961), 253–259. MR 126253
- Hans Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1937), 145–234 (German). MR 1556968
- George W. Henderson, The pseudo-arc as an inverse limit with one binding map, Duke Math. J. 31 (1964), 421–425. MR 166766
- R. F. Jolly and J. T. Rogers Jr., Inverse limit spaces defined by only finitely many distinct bonding maps, Fund. Math. 68 (1970), 117–120. MR 264617, DOI 10.4064/fm-68-2-117-120 C. Kuratowski and S. Ulam, Sur un coefficient lié aux transformations continues d’ensembles, Fund. Math. 20 (1933), 244-253.
- William S. Mahavier, A chainable continuum not homeomorphic to an inverse limit on $[0,\,1]$ with only one bonding map, Proc. Amer. Math. Soc. 18 (1967), 284–286. MR 208580, DOI 10.1090/S0002-9939-1967-0208580-7
- Sibe Mardešić and Jack Segal, $\varepsilon$-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146–164. MR 158367, DOI 10.1090/S0002-9947-1963-0158367-X
- Michael C. McCord, Universal, ${\cal P}$-like compacta, Michigan Math. J. 13 (1966), 71–85. MR 188986
- J. W. Rogers Jr., Decomposable inverse limits with a single bonding map on $[0,\,1]$ below the identity, Fund. Math. 66 (1969/70), 177–183. MR 259866, DOI 10.4064/fm-66-2-177-183
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 21 (1969), 281-283
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9939-1969-0248758-1
- MathSciNet review: 0248758