Product spaces for which the Stone-Weierstrass theorem holds
HTML articles powered by AMS MathViewer
- by R. M. Stephenson
- Proc. Amer. Math. Soc. 21 (1969), 284-288
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250260-8
- PDF | Request permission
References
- B. Banaschewski, On the Weierstrass-Stone approximation theorem, Fund. Math. 44 (1957), 249–252. MR 92931, DOI 10.4064/fm-44-3-249-252
- N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule II.) Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre. 2: Structures uniformes, Actualités Sci. Indust., No. 1142, Hermann, Paris, 1961 (French). Troisiéme édition entiérement refondue. MR 0141067
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Horst Herrlich, $T_{v}$-Abgeschlossenheit und $T_{v}$-Minimalität, Math. Z. 88 (1965), 285–294 (German). MR 184191, DOI 10.1007/BF01111687
- R. M. Stephenson Jr., Spaces for which the Stone-Weierstrass theorem holds, Trans. Amer. Math. Soc. 133 (1968), 537–546. MR 227753, DOI 10.1090/S0002-9947-1968-0227753-6
- Hisahiro Tamano, A note on the pseudo-compactness of the product of two spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 225–230. MR 120619, DOI 10.1215/kjm/1250775908
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 21 (1969), 284-288
- MSC: Primary 54.23
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250260-8
- MathSciNet review: 0250260