MULTINOMIAL REPRESENTATION OF SOLUTIONS
OF A CLASS OF SINGULAR INITIAL
VALUE PROBLEMS

L. R. BRAGG\(^1\) AND J. W. DETTMAN\(^2\)

1. Introduction. Let \(x = (x_1, \ldots, x_n), x^a = x_1^{a_1} \cdots x_n^{a_n} \) where \(k \) is the vector \((k_1, \ldots, k_n)\) with \(k_j \) a nonnegative integer \((j = 1, \ldots, n)\), and let \(\|k\| = k_1 + \cdots + k_n \). Let \(\phi(x) \) be an analytic function of \(x_1, \ldots, x_n \) in a domain \(D \) that includes the origin and let \(\Delta_j = D_{x_j}^2 + (\alpha_j/x_j) D_{x_j}; \alpha_j \geq 0; j = 1, \ldots, n \). Finally, let \(a > -1 \) and \(\epsilon_j = 1 \) if \(j = 1, \ldots, m \) and \(\epsilon_j = -1 \) if \(j = m + 1, \ldots, n \). In this note, we shall be concerned with the question of obtaining representations of analytic solutions of the problem

\[
\begin{align*}
\text{(a)} & \quad \left(D_t^2 + \frac{a}{t} D_t \right) u(x, t) = \sum_{j=1}^{n} \epsilon_j \Delta_j u(x, t), \\
\text{(b)} & \quad u(x, 0) = \phi(x), \quad u_t(x, 0) = 0
\end{align*}
\]

(1.1)

in terms of a set \(\{P_k(x, t)\} \) of associated multinomials. These multinomials \(P_k(x, t) \) are solutions of (1.1) corresponding to the choice \(\phi(x) = x^a \) in (1.1b). It will be shown that these \(P_k(x, t) \) have the explicit forms

\[
P_k(x, t) = \Gamma \left(\frac{a+1}{2} \right) \sum_{j=0}^{\|k\|} \frac{t^{\|k\|}}{\Gamma(j + (a + 1)/2)} P_{k_j}(x)
\]

(1.2)

with \(P_{k_j}(x) = \sum_{r_s, k_s - r_s, \sum |r_s| = j} \prod_{s=1}^{n} \left\{ \frac{r_s}{k_s} \right\} \frac{\Gamma(k_s + (\alpha_s + 1)/2)}{\Gamma(k_s - r_s + (\alpha_s + 1)/2)} x^{k_s - r_s} \). Multinomials of this type have been constructed by E. P. Miles and E. C. Young [3] when \(m = n \) or \(m = 0 \). In these cases (1.1a) reduces to either the generalized Euler-Poisson-Darboux or the generalized Beltrami equation. R. P. Gilbert and H. C. Howard ([5], [6]) have discussed analyticity properties of solutions of special cases of (1.1) (see [5] for additional reference).

The authors have examined similar problems when \(n = 1 \) [2]. In

\(^1\) The work of this author was supported by NSF Grant GP-7382.
\(^2\) The work of the second author was supported by NSF Grant GP-8123.
these cases, the corresponding $P_k(x, t)$ are defined in terms of Jacobi polynomials. The growth bounds and asymptotic estimates for these Jacobi polynomials then permit the obtaining of global regions of convergence from a knowledge of the singularities of the given data function $\phi(x)$. Suitable bounds on the $P_k(x, t)$ for $n \geq 2$ can be obtained by employing the method of related partial differential equations [1]. It will be found that these $P_k(x, t)$, $n \geq 2$, can be expressed as a convolution of n polynomials $P_k(x_j, t)$, $j = 1, \ldots, n$. Bounds for the $P_k(x, t)$ then follow from the bounds on the simpler polynomials entering this convolution. In particular, we shall prove

Theorem 1. Let $\phi(x) = \sum_{k=0}^{\infty} a_k x^{2k}$ be analytic in (x_1, \ldots, x_n) and converge in a domain D that includes the origin. Then the series $\sum_{k=0}^{\infty} a_k P_k(x, t)$ converges to an analytic solution of (1.1) at least in a region S where S is defined by $(x, t) \in S$ if and only if

$$
(x_1 + t, \ldots, x_n + t, (x_{n+1} + t)^{1/2}, \ldots, (x_m + t)^{1/2}) \in D.
$$

If $n = 1$, this convergence region is maximal [2].

The methods used here can be employed for treating a much wider class of initial value problems. For brevity, we omit these cases. However, it should be clear that the key to handling the multi-space variable problem is a thorough treatment of the one space variable problem.

2. Some background results. It has been shown in [2] that if $n = 1$ and $\phi(x) = x^{2k}$ in (1.1), then the solution of (1.1) with $\alpha_1 = \alpha$ is given by

$$
u(x, t) = \frac{(-1)^k \Gamma((a + 1)/2)}{2^{(a+1)/2} k! \Gamma(k + (a + 1)/2)} \frac{(t^2 + x^2)^k}{(t^2 + x^2)} P_k^\epsilon(x)
$$

where $P_k^{(\mu, \nu)}(y)$ denotes a Jacobi polynomial of degree k in y with parameters μ and ν. The upper sign is used in (2.1) if $\epsilon_1 = 1$ and the lower sign is used if $\epsilon_1 = -1$. Further, we have the following bounds on this $u(x, t)$:

$$
|u(x, t)| \leq \frac{\Gamma((a + 1)/2) \Gamma(k + (a + 1)/2)}{2 \sqrt{\pi} \Gamma(k + 1/2)} (x + t)^{2k} + (x - t)^{2k}, \quad \epsilon_1 = 1,
$$

(2.2) (a)

$$
|u(x, t)| \leq K \frac{\Gamma((a + 1)/2) \Gamma(k + (a + 1)/2)}{\Gamma(k + (a + 1)/2)} ^{2k} (x^2 + t^2)^k, \quad \epsilon_1 = -1
$$

(2.2) (b)
where $g = \max((\alpha - 1)/2, (a - 1)/2, -1/2)$ and $K > 1$. In the bound (2.2a), we have used the fact that $a \geq 0$. However, if $-1 < a < 0$, an application of the relation

\[
P_k^{(a,v,k)}(x) = \left\{ \frac{\mu + \nu + k}{\mu + \nu + 2k} \right\} P_k^{(a,v)}(x) + \left\{ \frac{\mu + k}{\mu + \nu + 2k} \right\} P_{k-1}^{(a,v)}(x)
\]

(see [4, p. 265]) along with (2.1) and the bound (2.2a) shows that

\[
\left| u(x, t) \right| \leq \frac{2k\Gamma((a + 1)/2)}{\sqrt{\pi}\Gamma(-1/2)} \Gamma(k + (a + 1)/2) \{ |x| + |t| \}^{2k},
\]

(2.3)

We now show that the multinomials $P_k(x, t)$ given by (1.2) for $n \geq 2$ satisfy (1.1) with $\phi(x) = x^{2k}$. It is clear that if $P_k(x, t)$ is a solution of (1.1), then $P_k(x, t)$ must have the form $\sum_{j=0}^{\|k\|} t^j Q_j(x)$. If this is substituted into (1.1), we obtain $Q_0(x) = x^{2k}$ along with the recursion formula

\[
Q_j(x) = \frac{1}{2j(2j + a + 1)} \left\{ \epsilon_1 \Delta_1 + \cdots + \epsilon_n \Delta_n \right\} Q_{j-1}(x), \quad j = 1, 2, \cdots, \|k\|.
\]

With this, we readily obtain

\[
P_k(x, t) = \Gamma\left(\frac{a + 1}{2} \right) \sum_{j=0}^{\|k\|} \frac{t^{2j}}{2^{2j+1}\Gamma(j + (a + 1)/2)} \left\{ \epsilon_1 \Delta_1 + \cdots + \epsilon_n \Delta_n \right\} x^{2k}.
\]

The solution form (1.2) follows by expanding the operator and using the fact that

\[
\Delta_j x_j^{2k} = \frac{2r_j k_j! \Gamma(k_j + (\alpha_j + 1)/2)}{(k_j - r_j + 1)! \Gamma(k_j - r_j + (\alpha_j + 1)/2)} x^{2(k_j-r_j)}, \quad r_j \leq k_j,
\]

(2.4)

= 0 \quad \text{if} \quad r_j > k_j.

Finally, we recall some elementary results from "heat type" equations and related partial differential equations. Let $v(x, t)$ be a solution of the problem

\[
D_p(x, t) = \sum_{j=1}^{n} \epsilon_j \Delta_j v(x, t), \quad v(x, 0) = x^{2k}.
\]

(2.5)
Then $v(x, t) = \prod_{j=1}^{n} v_{k_j}(x_j, t)$ where $v_{k_j}(x_j, t)$ satisfies the problem

$$D_i v_{k_j}(x_j, t) = \epsilon_j \Delta v_{k_j}(x_j, t), \quad v_{k_j}(x_j, 0) = x_j^{2k_j}.$$

An application of formula (4.2) of [1] (modified slightly to fit the present generalization) shows that the solution of (1.1) with $\phi(x) = x^{2k}$ can be written in the form

$$P_k(x, t) = t^{1-a} \frac{\Gamma((a + 1)/2)}{\Gamma((a + 1)/2n)} \prod_{j=1}^{n} \left\{ \int_{s}^{\infty} \frac{e^{-(a+1)/2n} v_{k_j}(x_j, s)}{s^{(a+1)/2n-1}} ds \right\}.$$

By the convolution theorem for Laplace transforms, as applied to the right member of (2.7), it follows that

$$P_k(x, t) = t^{1-a} \frac{\Gamma((a + 1)/2)}{\Gamma((a + 1)/2n)} \prod_{j=1}^{n} \left\{ \int_{s}^{\infty} \frac{e^{-(a+1)/2n} W_{k_j}(x_j, s^{1/2})}{s^{(a+1)/2n-1}} ds \right\}.$$

We understand this notation to mean that

$$U_i(x_i, \tau^{1/2}) * U_j(x_j, \tau^{1/2}) = \int_{0}^{\tau} U_i(x_i, \sigma^{1/2}) U_j(x_j, (\tau - \sigma)^{1/2}) d\sigma$$

and

$$\prod_{j=1}^{n} U_j(x_j, \tau^{1/2}) = U_1(x_1, \tau^{1/2}) * U_2(x_2, \tau^{1/2}) * \cdots * U_n(x_n, \tau^{1/2}).$$

The $W_{k_j}(x_j, t)$ in (2.8) are solutions of the problems

$$D_i W_{k_j}(x_j, t) + \frac{(a + 1)/n - 1}{t} D_t W_{k_j}(x_j, t) = \epsilon_j \Delta_j W_{k_j}(x_j, t),$$

$$W_{k_j}(x_j, 0) = x_j^{2k_j}, \quad D_t W_{k_j}(x_j, 0) = 0, \quad j = 1, \ldots, n.$$

Since $a+1 > 0$, the Euler-Poisson-Darboux or Beltrami problems in (2.9) have unique solutions in the class of polynomials. These are given by making the following changes in (2.1). Replace a by $(a+1)/n-1$, k by k_j, and x by x_j, $j=1, 2, \ldots, n$.

3. **Proof of Theorem 1.** An introduction of the bounds (2.2b) and (2.3) into (2.8) now permits us to obtain growth bounds on the $P_k(x, t)$. For example, if $m=1$, $n=2$, and

$$q_2 = \max((\alpha_2 - 1)/2), ((a + 1)/4 - 1, -1/2),$$

we obtain
\[
| P_k(x, t) | \leq \frac{t^{l-m} \Gamma((a+1)/2)}{\Gamma((a+1)/4)}^2 \\
\cdot \int_0^\tau \sigma^{(a+1)/4-1}(\tau - \sigma)^{(a+1)/4-1} \left| W_{k_1}(x_1, \sigma^{1/2}) \right| \cdot \left| W_{k_2}(x_2, (\tau - \sigma)^{1/2}) \right| d\sigma \\
\leq \frac{t^{l-m} \Gamma((a+1)/2)}{\Gamma((a+1)/4)}^2 \frac{2K}{\sqrt{\pi}} \frac{k_1 \Gamma(k_1 + (a+1)/2)}{\Gamma(k_1 - 1/2)} \frac{k_2 \gamma_2 k_2!}{\Gamma(k_2 + (a+1)/4)} \\
\cdot \left(\int_0^\tau \sigma^{(a+1)/4-1}(\tau - \sigma)^{(a+1)/4-1} \left| x_1 \right| + \left| \sigma \right| \right)^{2k_1} \\
\cdot \left(x_2^2 + (\tau - \sigma)^2 \right)^{k_2} \\
\cdot \left(\int_0^\tau \sigma^{(a+1)/4-1}(\tau - \sigma)^{(a+1)/4-1} d\sigma \right)
\]

Repeated applications of this argument permit us to prove that, in general,

\[
| P_k(x, t) | \leq \left\{ \Gamma\left(\frac{a+1}{4} \right) \right\}^2 \frac{2K}{\sqrt{\pi}} \frac{k_1 \Gamma(k_1 + (a+1)/2)}{\Gamma(k_1 - 1/2)} \frac{k_2 \gamma_2 k_2!}{\Gamma(k_2 + (a+1)/4)} \\
\cdot \left(\int_0^\tau \sigma^{(a+1)/4-1}(\tau - \sigma)^{(a+1)/4-1} d\sigma \right)
\]

where \(q_j = \max((\alpha_j - 1)/2, (a+1)/2n - 1, -1/2) \), \(j = m+1, \ldots, n \).

It is clear from the form of the right member of (3.1) that there exist constants \(C, \rho_1, \ldots, \rho_n \) with \(\rho_j = \rho_j(\alpha_j) \), \(j = 1, \ldots, m \) and \(\rho_j = \rho_j(\alpha_j, a, n) \) for \(j = m+1, \ldots, n \) such that
\[(3.2) \left| P_k(x, t) \right| \leq C \left\{ \prod_{j=1}^{n} k_j^{p_j} \right\} \left(|x_1| + |t| \right)^{2k_1} \cdots \left(|x_m| + |t| \right)^{2k_m} \]
\[
\cdot \left(|x_{m+1}| + t \right)^{2k_{m+1}} \cdots \left(|x_n| + t \right)^{2k_n}.
\]

Now, \(\phi(x) \leq \sum_{|k| = 0}^{\infty} |a_k| \left| x_1 \right|^{2k_1} \cdots \left| x_n \right|^{2k_n} \), this last series converging for \(x \in D \). But for \(x \in D \), the series
\[(3.3) \sum_{|k| = 0}^{\infty} \left| a_k \right| \left\{ \prod_{j=1}^{n} k_j^{p_j} \right\} \left| x_1 \right|^{2k_1} \cdots \left| x_n \right|^{2k_n} \]
also converges. If \(u(x, t) = \sum_{|k| = 0}^{\infty} a_k P_k(x, t) \), it follows from (3.2) that
\[
\left| u(x, t) \right| \leq \sum_{|k| = 0}^{\infty} \left| a_k \right| \left| P_k(x, t) \right| \leq C \sum_{|k| = 0}^{\infty} \left| a_k \right| \left\{ \prod_{j=1}^{n} k_j^{p_j} \right\} \left(|x_1| + |t| \right)^{2k_1} \cdots \left(|x_m| + |t| \right)^{2k_m} \]
\[
\cdot \left(|x_{m+1}| + t \right)^{2k_{m+1}} \cdots \left(|x_n| + t \right)^{2k_n}.\]

A comparison of this last series with the series (3.3) shows that this dominating series converges in the region \(S \) as stated in Theorem 1. This completes the proof of convergence. What remains to be shown is that the function defined by the series is a solution of the differential equation and satisfies the initial conditions. The method is similar to that given in [2] and will not be repeated here.

References

Oakland University