INCLUSION THEOREMS FOR SONNENSCHEIN MATRICES

FREDERICK HARTMANN

1. Introduction. Inclusion theorems for various methods of summability have been the subject of recent research [2], [5]. In this article necessary and sufficient conditions for the inclusion of Sonnenschein matrix methods are investigated with special attention to matrices with complex entries.

Let f be a function that is analytic for $z \in D_f = \{ z : |z| < R \}, R > 1$ and $f(1) = 1$. Let

$$
\{ f(z) \}^n = \sum_{k=0}^{\infty} a_{nk} z^k, \quad n = 1, 2, \cdots,
$$

$$
a_{00} = 1, \quad a_{0k} = 0, \quad k = 1, 2, \cdots.
$$

Then f determines a sequence to sequence transformation, $A(f) = (a_{nk})$, whereby if $\{ s_k \}$ is a sequence and $\sigma_n = \sum_{k=0}^{n} a_{nk} s_k, n = 0, 1, 2, \cdots$ with $\sigma_n \to \sigma$ then $\{ s_k \}$ is said to be $A(f)$-summable to σ. Such matrices are called Sonnenschein matrices [7]. Special well-known cases to be discussed here are the Taylor or Circle method, $T(r)$ [8], $f(z) = (1 - r) z / (1 - rz), |r| < 1$; the Laurent method, $S(q)$ [8], $f(z) = (1 - q) / (1 - qz), |q| < 1$; the Euler-Knopp method, $E(p)$ [1], $f(z) = (1 - p + pz);$ and a generalization of the three preceding, the Karamata method, $K(\alpha, \beta)$ [7], $f(z) = \{ \alpha + (1 - \alpha - \beta)z \} / (1 - \beta z), |\beta| < 1$. In this new notation $T(r) = K(0, r), S(q) = K(1 - q, q), E(p) = K(1 - p, 0).$ Necessary and sufficient conditions for these methods to be regular are $0 \leq r < 1, [3]; 0 < q < 1, [4]; 0 < p \leq 1, [1];$ and $\alpha = \beta = 0$ or $1 - |\alpha|^2 > (1 - \alpha)(1 - \beta) > 0, [6]$ respectively.

The following lemma and notation will be used in the sequel.

Lemma 1. Let $DA(f)$ denote the domain of values z for which the geometric series is $A(f)$-summable to $(1 - z)^{-1}$. Then

$$
DA(f) = \{ z : |f(z)| < 1 \}, \quad z \in D_f.
$$

Proof. Let the nth partial sum of the geometric series be denoted by $S_n = (1 - z^{n+1}) / (1 - z)$. Then the $A(f)$-transform, $\{ \sigma_n \}$, of $\{ S_n \}$ is given by

1 This work was part of the author's doctoral dissertation completed at Lehigh University, 1968, under the direction of Professor J. P. King.
\[\sigma_n = \sum_{k=0}^{\infty} a_{nk} S_k = (1 - z)^{-1} \sum_{k=0}^{\infty} a_{nk} - (1 - z)^{-1} \sum_{k=0}^{\infty} a_{nk} z^{k+1} \]

\[= (1 - z)^{-1} - z(1 - z)^{-1} \{ f(z) \}^n. \]

Thus \(\sigma_n \to (1 - z)^{-1} \) if and only if \(\{ f(z) \}^n \to 0 \) if \(n \to \infty \) and only if \(|f(z)| < 1 \).

Let

\[m = \{ x = \{ x_n \} : x \text{ is bounded} \}, \quad c = \{ x = \{ x_n \} : x \text{ is convergent} \}, \]

\[c_{A(f)} = \{ x : A(f)x = \left\{ \sum_{k=0}^{\infty} a_{nk} x_k \right\} \in c \}, \quad \Delta(0, 1) = \{ z : |z| \leq 1 \}. \]

2. Products and inverses.

Theorem 1. Suppose \(A(f), A(g) \) are Sonnenschein matrices and \(g(\Delta(0, 1)) \subseteq D_f \) then \(A(f) \cdot A(g) = A(f \circ g) \) and moreover \((A(f)A(g))y = A(f)(A(g)y) \) for all \(y \in m \).

Proof. Let \(z \in \Delta(0, 1) \) and \(A(f) = (a_{nk}), A(g) = (b_{kj}) \). Then

\[\{ g(z) \}^k = \sum_{j=0}^{\infty} b_{kj} z^j, \quad k = 0, 1, 2, \ldots \]

and the convergence is absolute. Since \(g(z) \in D_f \)

\[\{ f(g(z)) \}^n = \sum_{k=0}^{\infty} a_{nk} \{ g(z) \}^k, \quad n = 0, 1, 2, \ldots \]

(1)

\[= \sum_{k=0}^{\infty} a_{nk} \left(\sum_{j=0}^{\infty} b_{kj} z^j \right) = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{nk} b_{kj} \right) z^j. \]

The rearrangement (1) is permitted since the series involved converge absolutely. Likewise \(f(g(z)) \) is analytic on \(D_{\text{range}} \supseteq \Delta(0, 1) \) and hence

\[\{ f(g(z)) \}^n = \sum_{k=0}^{\infty} c_{nk} z^k, \quad n = 0, 1, 2, \ldots \]

Thus by (1) and the uniqueness of power series representation

\[c_{nk} = \sum_{j=0}^{\infty} a_{nj} b_{kj}, \quad n = 0, 1, 2, \ldots, \quad k = 0, 1, 2, \ldots. \]

If \(y \in m \), there exists \(M \), such that \(|y_j| < M \), for all \(j \) and

\[\sum_{k=0}^{\infty} a_{nk} \left(\sum_{j=0}^{\infty} b_{kj} y_j \right) = \sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{nk} b_{kj} \right) y_j, \]

since
and the right-hand side converges since $1 \in D_{f^{-1}}$.

In the following corollary, f is a one-to-one analytic function and $D_{f^{-1}}$ is the disk about the origin on which f^{-1} has a power series representation. (These two conditions are summarized in the single hypothesis $A(f)$ and $A(f^{-1})$ are Sonnenschein matrices.)

Corollary. Suppose $A(f)$ and $A(f^{-1})$ are Sonnenschein matrices with $D_{f^{-1}} \supseteq f(\Delta(0, 1))$ then $A(f) \cdot A(f^{-1}) = I = A(f^{-1}) \cdot A(f)$, where I is the identity matrix, i.e., $A(f^{-1}) = \{A(f)\}^{-1}$.

Proof. $A(f)$ and $A(f^{-1})$ Sonnenschein imply $D_{f} \supseteq \Delta(0, 1)$ and $D_{f} \supseteq \Delta(0, 1)$. Furthermore, $D_{f} \supseteq f^{-1}(\Delta(0, 1))$ and $D_{f} \supseteq f(\Delta(0, 1))$. Therefore $A(f) \cdot A(f^{-1}) = A(f \circ f^{-1}) = A(e) = I = A(e) = A(f^{-1} \circ f) = A(f^{-1}) \cdot A(f)$, where e is the identity function on the domain of $f \circ f^{-1}$ and $f^{-1} \circ f$ respectively.

3. **Inclusion theorems.** The following theorem can easily be proved using infinite matrix algebra.

Theorem 2. Let A, B be one-to-one sequence matrix transformations. Let A^{-1} exist and $B(A^{-1}y) = (BA^{-1})y$ and $A(A^{-1}y) = (AA^{-1})y = y$, for all $y \in m$. Then $c_{A} \subseteq c_{B}$ if and only if BA^{-1} is conservative. Moreover, if A is regular then Ax and Bx converge to the same limit for $x \in c_{A}$ if and only if BA^{-1} is regular.

We are now prepared to prove our main result.

Theorem 3. Suppose $A(f)$, $A(g)$ and $A(f^{-1})$ are Sonnenschein matrices with $A(f)$ a regular, one-to-one transformation. Then $c_{A(f)} \subseteq c_{A(g)}$ and $A(f)x$ and $A(g)x$ converge to the same limit if and only if $D_{f} \supseteq f^{-1}(\Delta(0, 1))$ and $A(g) \cdot A(f^{-1})$ is regular.

Proof. **Sufficiency.** Since $A(f)$ is a regular Sonnenschein matrix and $A(f^{-1})$ is Sonnenschein, a result of Bajšanski [2] implies $f(\Delta(0, 1)) \subseteq \Delta(0, 1) \subseteq D_{f^{-1}}$. Hence by the corollary to Theorem 1 $A(f^{-1}) = \{A(f)\}^{-1}$ and $A(g) \cdot A(f^{-1}) = A(g \circ f^{-1}) = A(g) \cdot \{A(f)\}^{-1}$ and $A(g)(A(f^{-1})y) = (A(g) \cdot A(f^{-1}))y$, $A(f)(A(f^{-1})y) = (A(f) \cdot A(f^{-1}))y = y$, for all $y \in m$. Thus Theorem 2 implies the result.

Necessity. By Theorem 2 it remains only to show that $D_{f} \supseteq f^{-1}(\Delta(0, 1))$ is necessary. Suppose $c_{A(f)} \subseteq c_{A(g)}$ and $D_{f} \supseteq f^{-1}(\Delta(0, 1)) = \{z : |f(z)| < 1, z \in D_{f}\}$. By Lemma 1 this implies $DA(g) \supseteq DA(f)$ and this contradicts the hypothesis $c_{A(f)} \subseteq c_{A(g)}$.

Let \(f(z) = \frac{\alpha' + (1 - \alpha' - \beta')z}{(1 - \beta'z)} \) and
\[
g(z) = \frac{\alpha + (1 - \alpha - \beta)z}{(1 - \beta z)}
\]
with \(|\beta| < 1\) and \(|\beta'| < 1\). Then \(A(f) = K(\alpha', \beta') \) and \(A(g) = K(\alpha, \beta) \).
When no confusion can arise \(K(\alpha', \beta') \cap m \subseteq K(\alpha, \beta) \) will replace the more cumbersome \(c_{K(\alpha', \beta')} \cap m \subseteq c_{K(\alpha, \beta)} \).

Theorem 4. Suppose \(|\beta| < 1\), \(|\beta'| < 1\) and

\[
|\alpha'\beta' - 1 + \alpha' + \beta' - 2| \cdot |\alpha'\beta'| \cos \theta | \\
\geq 2 |\beta'| \cdot \left| \frac{\alpha' + \beta' - 1 - \alpha'\beta'}{\alpha' + \beta' - 1 + \alpha'\beta'} \right|
\]

where \(\theta \) is the positive angle between \(\alpha' \) and \(\mu = (\alpha'\beta' - 1 + \alpha' + \beta')/2\beta' \) and

\[
1 - |\alpha'|^2 > (1 - \alpha')(1 - \beta') > 0 \quad \text{or} \quad \alpha' = \beta' = 0
\]

then \(K(\alpha', \beta') \cap m \subseteq K(\alpha, \beta) \) and the transformed limits are the same if and only if

\[
|\beta| \cdot 1 - |\alpha'|^2 < |\beta'|^2 - |1 - \beta' - \alpha'|^2
\]

and

\[
(1 - \beta') - \alpha'(1 - \beta) |^2 - |(1 - \beta')(1 - \alpha')| (1 - \alpha') > 0
\]

or \(\alpha = \alpha' \) and \(\beta = \beta' \).

Proof. If \(|\beta| < 1\), \(|\beta'| < 1\), then \(A(f) = K(\alpha', \beta') \) and \(A(g) = K(\alpha, \beta) \) are Sonnenschein matrices and moreover it follows that the \(K(\alpha', \beta') \) transform is one-to-one on \(c_{K(\alpha', \beta')} \cap m \). For \(A(f^{-1}) \) to be Sonnenschein it is necessary that the range of \(f \) include the unit disk, i.e.

\[
f(\{z: |z| < 1/|\beta'| \}) \supset \Delta(0, 1).
\]

\(f \) transforms the disk \(D(0, 1/|\beta'|) \) conformally onto the half plane, \(H \), whose boundary contains \(f(-1/\beta') = \mu \) and whose interior contains \(f(0) = \alpha' \). The line through \(\mu \) and \(\alpha' \) is thus perpendicular to the boundary of \(H \), because the line through \(-1/\beta' \) and \(0 \) is perpendicular to the circle \(C(0, 1/|\beta'|) \). A simple calculation shows \(H \supset \Delta(0, 1) \) if and only if

\[
|\mu| | | \mu | - |\alpha'| \cos \theta | \geq |\mu - \alpha'|,
\]

where \(\mu = \{\alpha'\beta' - 1 + \alpha' + \beta'/2\beta' \) if and only if (i) holds.
$f^{-1}(z) = (z - \alpha') / \{\beta'z + (1 - \alpha' - \beta')\}$

$$= \frac{-\alpha'}{1 - \alpha' - \beta'} + \left(1 - \left[\frac{-\alpha'}{1 - \alpha' - \beta'}\right] - \left[\frac{-\beta'}{1 - \alpha' - \beta'}\right]\right)z$$

$$\frac{1 - \left(\frac{-\beta'}{1 - \alpha' - \beta'}\right)}{z}$$

thus by the corollary to Theorem 1,

$$\{A(f)^{-1} - A(f^{-1}) = K\left(\frac{-\alpha'}{1 - \alpha' - \beta'}, \frac{-\beta'}{1 - \alpha' - \beta'}\right) = K^{-1}(\alpha', \beta')$$

if $|\beta'| < 1$ and (i) holds.

By Theorem 3, if $D_\delta \supseteq f^{-1}(\Delta(0, 1))$ then $A(g) \cdot A(f^{-1}) = A(g \circ f^{-1}) = K(\alpha, \beta) \cdot K^{-1}(\alpha', \beta')$ which implies

$$K(\alpha, \beta)K^{-1}(\alpha', \beta') = K\left(\frac{1 - \beta'}{1 - \alpha' - \beta' + \beta\alpha'}, \frac{\beta - \beta'}{1 - \alpha' - \beta'}\right).$$

Sledd [6] proved $K(\alpha^*, \beta^*)$ is regular if and only if $\alpha^* = \beta^* = 0$ or $1 - |\alpha^*|^2 > (1 - \alpha^*)(1 - \beta^*) > 0$. Thus $K(\alpha', \beta')$ is regular if and only if (ii) holds and $K(\alpha, \beta) \cdot K^{-1}(\alpha', \beta')$ is regular if and only if (iv) holds.

Finally, $\Delta D_{\delta} \supseteq f^{-1}(\Delta(0, 1))$ if and only if

$$1 - |\alpha'|^2 - (1 - \alpha')(1 - \beta') + |(1 - \alpha')(1 - \beta')| < \frac{1}{|\beta'|},$$

since $f^{-1}(\Delta(0, 1))$ is a disk with center,

$$C = \frac{1 - |\alpha'|^2 - (1 - \alpha')(1 - \beta')}{|\beta'|^2 - |1 - \alpha' - \beta'|^2}$$

and radius

$$R = \frac{|1 - \beta'| |1 - \alpha'|}{|\beta'|^2 - |1 - \alpha' - \beta'|^2}$$

and (1) is equivalent to $|C| + |R| < 1/|\beta|$. Thus the transformed disk is contained in $D_\delta = \{z: |z| < 1/|\beta|\}$ if and only if (1) holds. Thus if (ii) holds (iii) is equivalent to (1).

The following corollaries to Theorem 4 give necessary and sufficient conditions for inclusion of some well-known matrix transforms by other matrix methods. In particular they answer some questions posed by Schoonmaker [5].
Corollary 1. If \(\frac{1}{2} < p \leq 1 \) and \(0 < r < 1 \), then \(E(p) \subseteq T(r) \) if and only if \(\frac{(1-p)}{(2-p)} < r < \frac{p}{(2-p)} \).

Proof. With the notation of Theorem 4, \(E(p) = K(1-p, 0) \), \(T(r) = K(0, r) \). Thus conditions (i) and (ii) of that theorem are satisfied, because (i) is trivially true and (ii) is equivalent to \(0 < p \leq 1 \). Condition (iii) with hypothesis \(\frac{1}{2} < p \leq 1 \) and \(0 < r < 1 \) becomes
\[
| r | | 1 - | 1 - p |^2 | < | p |^2.
\]
This holds if and only if
\[
(1) \quad r < \frac{p}{(2 - p)}.
\]
Condition (iv) with \(\frac{1}{2} < p \leq 1 \) and \(0 < r < 1 \) becomes
\[
| 1 - (1-p)(1-r) |^2 - | (1-p)(1-r) |^2 > (1-r)p > 0
\]
which is equivalent to
\[
(2) \quad r > \frac{(1-p)}{(2-p)}.
\]
But inequalities (1) and (2) can hold simultaneously only if \(\frac{1}{2} < p \) and thus the result follows.

Corollary 2. If \(0 \leq r \leq \frac{1}{2} \) and \(| q | < 1 \) then \(T(r) \cap m \subseteq S(q) \) if and only if \(0 < q < 1 - 2r \).

Proof. \(S(q) = K(1-q, q) \) and \(T(r) = K(0, r) \). If \(0 \leq r \leq \frac{1}{2} \) and \(| q | < 1 \), condition (i) of Theorem 4 is satisfied, and (ii) is satisfied since (ii) is equivalent to regularity of \(T(r) \) or \(0 \leq r < 1 \). Conditions (iii) and (iv) will be satisfied if and only if
\[
(1) \quad | q | < | 1 - r |^2 - | r |^2
\]
and
\[
(2) \quad | 1 - r |^2 - | (1-q)(1-r) |^2 > q(1-q)(1-r) > 0.
\]
It follows from \(q(1-q)(1-r) > 0 \) and \(| q | < 1 \) that \(q \) is real and \(q > 0 \). But then, under the hypothesis of the corollary, (1) becomes \(q < 1 - 2r \) and (2) becomes \(q > (2r-1)/r \). But this latter inequality is satisfied since \((2r-1)/r < 0 < q \). Therefore (1) and (2) are equivalent to \(0 < q < 1 - 2r \).

Corollary 3. If \(0 \leq r \leq \frac{1}{3} \), then \(T(r) \cap m \subseteq E(p) \) if and only if \(0 < p < 1 \).

Proof. \(K(0, r) = T(r) \) and \(K(1-p, 0) = E(p) \). If \(0 \leq r \leq \frac{1}{3} \) then, a fortiori, \(0 < r < 1 \) which is equivalent to condition (ii) and implies condition (i) of Theorem 4. Conditions (iii) and (iv) of that theorem are equivalent to
(1) \[0 < |r|^2 - |1 - r|^2, \]
and
(2) \[|1 - r|^2 - |(1 - \rho)(1 - r)|^2 > \tilde{p}(1 - r) > 0, \]
respectively. (1) is trivially satisfied and (2) implies \(\rho \) is real, \(\rho > 0 \).

The first inequality in (2) thus reduces to \(\rho < 1 \) and the result follows.

Corollaries 1, 2, and 3 strengthen and add new results to theorems of Schoonmaker [5]. In conclusion it should be noted that results for \(E(\rho) \supset S(q) \) and \(T(\tau) \supset S(q) \) could not be found using the methods of this paper because \(f^{-1}(z) = \{z - (1 - q)/q^z \}, \ f(z) = (1 - q^z)/(1 - q^z) \), \(|q| < 1 \) is not analytic at the origin. This leads the author to suspect that \(S^{-1}(q) \) does not exist but no results along these lines could be found.

BIBLIOGRAPHY

VILLANOVA UNIVERSITY