A nonhomogeneous linear differential system with interface conditions.
HTML articles powered by AMS MathViewer
- by Robert Neff Bryan
- Proc. Amer. Math. Soc. 22 (1969), 270-276
- DOI: https://doi.org/10.1090/S0002-9939-1969-0241739-3
- PDF | Request permission
References
- G. D. Birkhoff and R. E. Langer, The boundary problems and development associated with a system of ordinary linear differential equations of the first order, Proc. Amer. Acad. Arts Sci. 58 (1923), 51-128.
R. N. Bryan, An adjoint system for a nonhomogeneous linear differential system (to appear).
- Randal H. Cole, General boundary conditions for an ordinary linear differential system, Trans. Amer. Math. Soc. 111 (1964), 521–550. MR 159979, DOI 10.1090/S0002-9947-1964-0159979-0
- R. Conti, On ordinary differential equations with interface conditions, J. Differential Equations 4 (1968), 4–11. MR 218642, DOI 10.1016/0022-0396(68)90045-4
- Allan M. Krall, Differential operators and their adjoints under integral and multiple point boundary conditions, J. Differential Equations 4 (1968), 327–336. MR 230968, DOI 10.1016/0022-0396(68)90019-3
- Allan M. Krall, Nonhomogeneous differential operators, Michigan Math. J. 12 (1965), 247–255. MR 176143
- T. J. Pignani and W. M. Whyburn, Differential systems with interface and general boundary conditions, J. Elisha Mitchell Sci. Soc. 72 (1956), 1–14. MR 79180
- F. W. Stallard, Functions of bounded variation as solutions of differential systems, Proc. Amer. Math. Soc. 13 (1962), 366–373. MR 138835, DOI 10.1090/S0002-9939-1962-0138835-1
- William M. Whyburn, Differential systems with general boundary conditions, Univ. California Publ. Math. (N.S.) 2 (1944), 45–61 [No. 1, Seminar Rep. in Math. (Los Angeles)]. MR 10226
- Anton Zettl, Adjoint and self-adjoint boundary value problems with interface conditions, SIAM J. Appl. Math. 16 (1968), 851–859. MR 234049, DOI 10.1137/0116069
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 270-276
- MSC: Primary 34.20
- DOI: https://doi.org/10.1090/S0002-9939-1969-0241739-3
- MathSciNet review: 0241739