Let F be a field of algebraic functions of one variable having the finite field K as exact field of constants. The class number of F is defined as the order of the finite group, $C_0(F)$, of divisor classes of degree zero. Let L be the unique cyclic extension of K of degree n, $E = F \cdot L$ the corresponding constant extension with galois group G. Since K is perfect, the canonical homomorphism of the group of divisor classes of F in the group of divisor classes of E is an injection [2, p. 477]. If h_E, h_F denote the class numbers of E and F, respectively, we have $h_E = h_F \cdot k$, for some integer k. The purpose of this note is to prove the following two theorems:

Theorem 1. If E/F is a constant extension of the algebraic function field F and if G is the corresponding galois group, then $H^i(G, C_0(E)) = 0$ for all i.

Theorem 2. If E/F is a constant extension of prime degree p, then $h_E = h_F \cdot k$ where $k \equiv 1 \mod p$ if $p \mid h_F$ and $k \equiv 0 \mod p$ if $p \nmid h_F$ and t is the p-rank of $C_0(F)$.

Throughout this note E/F will denote a cyclic constant extension of the algebraic function field F with galois group G generated by σ. In a natural fashion G operates on the prime divisors of E. Thus if $N_{E/F} = 1+\sigma + \cdots + \sigma^{n-1}$, $n = [E:F]$, we have for a prime \wp of E, that $N_{E/F}\wp = \wp^{n(\wp)}$ where $\wp = \wp_1\wp_2\cdots\wp_t$, $n(\wp) = [E(\wp):F(\wp)]$ the degree of the corresponding completions since the extension is everywhere unramified. We see easily then that $\deg_{E/K} N_{E/F}(\wp) = n \deg_{B/E}\wp$. This norm map extends from the prime divisors to the full divisor group $D(E)$ in the natural way and it is compatible with the field norm and formation of principal divisors: that is, if we use parentheses to denote principal divisors and $\alpha \in E$, then $N_{E/F}(\alpha) = (N_{E/F}\alpha)$. We shall write the group operation in $D(E)$ additively and denote as usual the subgroup of principal divisors by $P(E)$ and the divisors of degree zero by $D_0(E)$. Similar notations will be used for the field F.

I. Proof of Theorem 1. In the normal extension E/F all primes \wp of E extending a fixed prime p of F are conjugate. Thus for $a \in D_0(E)$ we have $a^\sigma = a$ for all $\sigma \in G$ if and only if $a \in D_0(F)$; therefore $D_0(E)^\sigma$
GALOIS COHOMOLOGY

\[\text{From the exact } G\text{-sequence } 0 \rightarrow L \rightarrow E \rightarrow P(E) \rightarrow 0 \text{ we get the exact sequence} \]
\[0 \rightarrow L^0 \rightarrow E^0 \rightarrow P(E)^G \rightarrow H^1(G, L) \rightarrow H^1(G, E) \rightarrow \cdots \text{. Using Hilbert's Theorem 90 and the fact that } L \text{ is a finite field, we conclude} \]
\[P(E)^G = P(F) \quad \text{and} \quad H^1(G, P(E)) = 0. \]

Consequently from the exact G-sequence \[0 \rightarrow P(E) \rightarrow D_0(E) \rightarrow C_0(E) \rightarrow 0 \text{ and (1) we derive} \]
\[C_0(E)^G = C_0(F). \]

We next claim that the induced map \[N_{E,F}: C_0(E) \rightarrow C_0(F) \] is surjective. Let \(J(E) \) denote the idèle group of \(E \) and define \(\phi: J(E) \rightarrow D(E) \) by \(\phi(A) = \sum v_\varphi(A) A_\varphi \) where \(v_\varphi(A) = v_\varphi(A_\varphi), \) \(A_\varphi \) the \(\varphi \) component of the idèle \(A. \phi(A) \) is a divisor since \(A \) is a unit almost everywhere. It is easily checked that \(\phi \) is surjective. Let \(J(E)^0 = \phi^{-1}(D_0(E)) \).

Recall that \(J(E) \) is also a \(G \)-module and the norm on idèles is compatible with the norm on divisors \[[4] \]. Thus we have the exact and commutative diagram:
\[J(E)^0 \rightarrow D_0(E) \rightarrow 0 \]
\[N_{E,F} \downarrow \quad \downarrow N_{E,F} \]
\[J(F)^0 \rightarrow D_0(F) \rightarrow 0 \]

If \(I(E) \) denotes the idèle class group of \(E \), then class field theory \[[1, \text{p. 79}] \] asserts that \(J(F)^0/F \subset N_{E,F}(I(E)). \) Now suppose \(a \in C_0(F) \) and \(a \in D_0(F) \) is a representative for \(a \). Let \(A \in J(F)^0 \) be such that \(\phi(A) = a. \) Then there exists \(B \in J(E)^0 \) such that \(N_{E,F}B = A(\beta), \beta \in F. \) If \(b \) is the class of \(\phi(B) \) in \(C_0(E) \), we conclude from (3) that \(N_{E,F}b = a. \) Hence \(N_{E,F} \) is surjective.

We have therefore proved \(H^0(G, C_0(E)) = 0. \) But since \(C_0(E) \) is a finite group the Herbrand quotient gives that \(H^1(G, C_0(E)) = 0 \) as well. Using that \(G \) is cyclic and consequently has periodic cohomology, we have proved Theorem 1.

II. **Proof of Theorem 2.** Since \(C_0(E)^G = C_0(F) \) we can induce a \(G \)-action on the factor group \(C_0(E)/C_0(F) \) and get the exact \(G \)-sequence
\[0 \rightarrow C_0(F) \rightarrow C_0(E) \rightarrow C_0(E)/C_0(F) \rightarrow 0. \]

From this we derive
\[0 \rightarrow C_0(F)^G \rightarrow C_0(E)^G \rightarrow (C_0(E)/C_0(F))^G \rightarrow H^1(G, C_0(F)) \rightarrow \cdots. \]
Using Theorem 1 and the trivial action of G on $C_0(F)$ we see that

\[(4) \quad (C_0(E)/C_0(F))^G \cong H^1(G, C_0(F)).\]

Furthermore in the case of trivial action we have [3, p. 142]

\[(5) \quad |H^1(G, C_0(F))| = p^t, \quad \text{where } t \text{ is the } p\text{-rank of } C_0(F).\]

Therefore if $p \nmid h_F$, we have immediately that for $k = \left|\frac{C_0(E)}{C_0(F)}\right|$, $k \equiv 0 \mod p^t$, since $(C_0(E)/C_0(F))^G$ is a subgroup of $C_0(E)/C_0(F)$.

On the other hand, taking the decomposition of $C_0(E)/C_0(F)$ into G orbits we see that $k = \sum [G: H_c]$ where the summation extends over a set of representatives for the various orbits and H_c is the corresponding stabilizer. Therefore if G is of prime order p, we have $[G: H_c] = 1$ or p and $[G: H_c] = 1$ if and only if $G = H_c$. Tracing the action of G on $C_0(E)/C_0(F)$, we see that this is the case if and only if $c \in (C_0(E)/C_0(F))^G$. Therefore we have

\[(6) \quad k = \left|(C_0(E)/C_0(F))^G\right| + sp.\]

Hence if $p \mid h_F$ from (4), (5) and (6) we conclude that $k \equiv 1 \mod p$.

The following remarks are immediate consequences of Theorem 2.

1. If F is a function field in one variable with finite field of constants k and p is a prime with $p^\alpha || h_F$, $\alpha \geq 1$, then there is a constant extension E/F with $p^{\alpha+1} \mid h_E$.

2. If E/L is a constant extension of the algebraic function field F/K of prime degree p then $p \mid h_E$ if and only if $p \mid h_F$ ($h_F \neq 1$).

Bibliography