ON THE HAUSDORFF OPEN CONTINUOUS IMAGES OF
HAUSDORFF PARACOMPACT \(p \)-SPACES

H. H. WICKE\(^1\)

1. Introduction. Ponomarev proved the following remarkable theorem: Every \(T_0 \) first-countable space of infinite cardinality is an open continuous image of a zero-dimensional metrizable space of the same weight [8].\(^2\) This theorem clearly and succinctly summarizes the behavior of metrizable spaces under open mappings. The purpose of this article is to prove an analogue of Ponomarev's theorem in a not necessarily first-countable situation and to develop some of its consequences. This analogue, Theorem 1 below, is a joint discovery of the author and Dr. J. M. Worrell, Jr. [10]. Remark 4 shows how a proof of Ponomarev's theorem may be derived from the proof of Theorem 1. Theorem 1 leads directly to a characterization (Theorem 2) of the class of Hausdorff open continuous images of Hausdorff paracompact \(p \)-spaces as the class of Hausdorff spaces of point-countable type. The latter class generalizes the class of Hausdorff first-countable spaces. Both the concept of \(p \)-space and of space of point-countable type are due to Arhangel'skiï [3], [4]. Theorem 3, a rather direct consequence of Theorem 1, answers a question of Arhangel'skiï by generalizing a theorem of his to the Hausdorff case. A relation between Theorem 1, which involves single-valued mappings, and Theorem 3, which involves many-valued mappings, is pointed out in Remark 3.

2. Terminology. The general terminology used here is much like that of [7], one exception being that spaces called compact in [7] are here called bicompact. The usage of [7] in letting \(X \) ambiguously denote the topological space \((X, \tau) \) is followed where convenient, and product space refers to a Cartesian product of spaces endowed with the product topology [7]. A base for \(X \) means a base for the topology of \(X \). The letter \(N \) denotes the set of positive integers and if \(A \) is a set, \(\aleph(A) \) denotes the cardinal number of \(A \). The weight [2] of a topological space \((X, \tau) \) is defined as the smallest cardinal number

\(^1\) This work was supported by the United States Atomic Energy Commission.

\(^2\) Ponomarev does not point out that infinite cardinality is required. In fact, if \(S \) is a finite \(T_0 \) but not \(T_1 \) space any \(T_1 \) open continuous preimage of \(S \) has infinite weight and cardinality. In Theorem 1 infinite cardinality is not required since the spaces here are assumed to be \(T_1 \).
ber \(m \) such that \(\mathcal{B} \) has a base of cardinal \(m \). A mapping \(f: X \to Y \) is called \textit{perfect} \([1]\) if and only if it is closed, continuous, and \(f^{-1}(y) \) is bicompact for all \(y \in Y \). If \(\mathcal{A} \) is a collection of sets then \(\text{St}(x, \mathcal{A}) \) denotes \(\cup \{ A \in \mathcal{A} : x \in A \} \). A \(T_1 \)-space \(X \) is called a \(p \)-space \([3]\) if and only if there exists a sequence \(g_1, g_2, \ldots \) of collections of open subsets of the Wallman bicompactification \(\omega X \) of \(X \) covering \(X \) such that if \(x \in X, \cap \{ \text{St}(x, g_n) : n \in \mathbb{N} \} \subseteq X \). If \(X \) is a Tychonoff space this definition is equivalent to one in which \(\beta X \) (the Stone-Cech bicompactification of \(X \)) replaces \(\omega X \). A principal theorem for \(p \)-spaces, suggestive of the naturality of their use in Theorem 1, is that of Arhangel'skii: A \(T_2 \)-space is a paracompact \(p \)-space if and only if there exists a perfect mapping of it onto a metrizable space \([3, \text{Theorem 5.1}]\).

3. \textbf{Theorems.} If \((X, \mathcal{A})\) is a space and \(A \subseteq X \), a subcollection \(\mathcal{D} \) of \(\mathcal{B} \) whose members include \(A \) is called a \textit{base at} \(A \) if and only if for every \(U \in \mathcal{B} \) such that \(U \supseteq A \), there exists \(D \in \mathcal{D} \) such that \(A \subseteq D \subseteq U \).

If \(X \) is a space and \(A \subseteq X \), then \(A \) is said to be of \textit{countable character} \([4]\) if and only if there exists a countable base at \(A \).

A space \(X \) is said to be of \textit{point-countable type} \([4]\) if and only if \(X \) is covered by a collection of bicompact subspaces of countable character.

Remark 1. Any first-countable space is of point-countable type.

Remark 2. The property of being of point-countable type is preserved by open continuous mappings.

The following lemma was stated by Arhangel'skii \([5, \text{p. 158}]\). A proof is sketched here for completeness.

\textbf{Lemma 1.} A Tychonoff \(p \)-space is of point-countable type.

\textbf{Proof.} Every point of such a space \(X \) lies in a bicompact subset of \(X \) which is a \(G_\delta \)-set in \(\beta X \) and every such set has countable character.

\textbf{Lemma 2.} In a Hausdorff space \(X \) the following properties are equivalent:

(i) \(X \) is of point-countable type.

(ii) If \(U \) is open in \(X \) and \(x \in U \) there exists a bicompact set \(B \) of countable character such that \(x \in B \subseteq U \).

\textbf{Proof.} Clearly (ii) implies (i). Suppose \(x \in U \) and \(U \) is open. There exists a bicompact set \(B \) of countable character containing \(x \). Let \(\{ U_k : k \in \mathbb{N} \} \) be a base at \(B \) such that \(U_{k+1} \subseteq U_k \) for all \(k \in \mathbb{N} \). Then since \(X \) is Hausdorff \(B = \cap \{ \overline{U}_k : k \in \mathbb{N} \} \). Let \(V_1 = U \). Suppose open sets \(V_1, \ldots, V_n \) have been defined such that \(x \in V_k \subseteq U_k \cap V_{k-1} \) and \(\overline{V}_k \) is disjoint from \(B \sim V_{k-1} \) for \(1 < k \leq n \). Since \(B \sim V_n \) is bicompact, \(x \in V_n \) and \(X \) is \(T_2 \), there exists an open set \(V \) such that \(x \in V \subseteq \overline{V} \subseteq X \sim (B \sim V_n) \). Let \(V_{n+1} = V \cap V_n \cap U_{n+1} \). Thus there exists a sequence
\{ V_n \} such that for all \(n \in \mathbb{N} \), \(x \in V_{n+1} \subseteq V_n \cap U_{n+1} \) and \(V_{n+1} \) is disjoint from \(B \sim V_n \). Let \(C = \bigcap \{ V_n : n \in \mathbb{N} \} \). Then \(C \) is a closed (therefore bicom pact) subset of \(B \) containing \(x \). Since \(V_{n+1} \subseteq (X \sim B) \cup V_n \), \(C = \bigcap \{ V_n : n \in \mathbb{N} \} \) and \(C \subseteq U. \) Suppose \(W \) is open and \(C \subseteq W. \) If no \(V_n \subseteq W \), there exists a sequence \(\{ x_k \} \) such that each \(x_k \in V_n \sim W. \) Since \(\bigcap \{ V_k \sim W : k \in \mathbb{N} \} = \emptyset \) and \(B \) is bicom pact, there exists \(n \) such that \(V_k \sim W \subseteq X \sim B \) for all \(k \geq n \). Let \(A = \{ x_k : k \geq n \} \). Then \(A \subseteq X \sim W \) and \(\bar{A} \cap B \neq \emptyset \). For if \(B \subseteq X \sim \bar{A} \), then for some \(k \geq n \), \(U_k \subseteq X \sim \bar{A} \subseteq X \sim A \) contradicting \(x_k \in A. \) If \(y \in \bar{A} \cap B \), \(y \in \overline{V_k} \sim W \) for all \(k \in \mathbb{N} \), again a contradiction. Hence some \(V_n \subseteq W \), so that \(C \) has countable character.

Theorem 1. Suppose \(X \) is a Hausdorff space of point-countable type. Then \(X \) is the range of an open continuous mapping \(\phi \) such that: (1) The domain \(Y \) of \(\phi \) is a Hausdorff paracompact p-space. (2) The weight of \(Y \) is the weight of \(X \). (3) \(Y \) is a subspace of the product space of a zero-dimensional metrizable space and \(X \).

Proof. See §4.

Comment. For Tychonoff spaces, part (1) can be derived from [4, Theorem 3.14] by the method of Remark 3 below.

Theorem 2. A Hausdorff space is of point-countable type if and only if it is an open continuous image of a Hausdorff paracompact p-space.

Proof. This follows from Theorem 1, Lemma 1, and Remark 2.

Recall that a many-valued mapping \(f : X \rightarrow Y \) is called continuous (from above) [9] if and only if for every \(x \in X \) if \(V \subseteq Y \) is open and \(f(x) \subseteq V \) there exists an open \(U \subseteq X \) such that \(x \in U \) and \(f(U) \subseteq V \). The mapping \(f \) is called range-bicom pact (or \(Y \)-bicom pact [9]) if and only if \(f(x) \) is bicom pact for every \(x \in X \). Arhangel’skii proved the following theorem with the additional hypothesis that \(X \) is a Tychonoff space [4, Theorem 3.14] and asked [4, p. 54] whether it is valid for a wider class of spaces.

Theorem 3. Suppose \(X \) is a Hausdorff space. Then \(X \) is of point-countable type if and only if \(X \) is the range of an open continuous (possibly many-valued) range-bicom pact mapping of a metrizable space.

Proof. By Theorem 1, there exists a continuous mapping \(\phi \) of a \(T_2 \) paracompact p-space \(Y \) onto \(X \). By Arhangel’skii’s theorem (see §2) there exists a perfect mapping \(\theta \) of \(Y \) onto a metrizable space \(M \). It is straightforward to show that \(\phi \circ \theta^{-1} \) is an open continuous range-bicom pact mapping of \(M \) onto \(X \). The sufficiency follows from [4, Proposition 3.6].
Remark 3. Theorem 3 can be used to derive part (1) of Theorem 1. For if f is an open continuous many-valued range-bicompact mapping of a metrizable space X onto a Hausdorff space Y of point-countable type, let $Z = \{(x, y) \in X \times Y : y \in f(x)\}$, under the topology induced by the product topology. The set Z is called the graph of f by Ponomarev [9]. If θ and ϕ denote the projections of Z onto X and Y respectively, then it may be seen that $f = \phi \circ \theta^{-1}$ where ϕ is open and continuous and θ is perfect. (This statement may be proved in a fashion similar to that used by Ponomarev in showing that a perfect mapping f factors into $\phi \circ \theta^{-1}$ where θ and ϕ are perfect [9, Theorem 1, §2].) Hence Z is a paracompact p-space by Arhangel’skii's theorem and ϕ maps Z onto Y.

4. Proof of Theorem 1.

Proof. Assume $\mathcal{N}(X)$ is infinite. Let \mathcal{C} denote $\{B \subset X : B$ is bicompact and of countable character$\}$. For some base \mathcal{W} of X such that weight of $X = \mathcal{N}(\mathcal{W})$, let \mathcal{F} denote the collection of all unions of finite subcollections of \mathcal{W}. Then $\mathcal{N}(\mathcal{F}) = \text{weight of } X$ and $\mathcal{W} \subset \mathcal{F}$. Call a sequence α admissible if and only if for each $n \in N$: (1) $\alpha(n) \in \mathcal{F}$; (2) $\alpha(n+1) \subset \alpha(n)$; (3) for some $B \in \mathcal{C}$, $B = \bigcap \{\alpha(k) : k \in N\}$ and $\{\alpha(k) : k \in N\}$ is a base at B. Using bicompactness it may be seen that for each $B \in \mathcal{C}$ there exists an admissible sequence α satisfying (3) with respect to B.

Consider \mathcal{F} as a topological space with the discrete topology and let Δ denote the product space of countably many copies of \mathcal{F}. Let $\Gamma = \{\alpha \in \Delta : \alpha$ is admissible$\}$. Then Γ is a metrizable zero-dimensional space (it is a subspace of a Baire space [6]). Let $\Gamma \times X$ denote the product space of Γ and X and let

$$Y = \{(\alpha, x) \in \Gamma \times X : x \in \cap \{\alpha(k) : k \in N\}\},$$

with the topology induced by the product topology. Note that Y is Hausdorff. Let $\theta = \pi_1 | Y$ and $\phi = \pi_2 | Y$, where π_i denotes projection onto the ith coordinate. Then θ and ϕ are continuous mappings of Y onto Γ and X respectively.

If $\alpha \in \Gamma$, let $S(\alpha | n) = \{\alpha' \in \Gamma : \alpha'(k) = \alpha(k), k = 1, \ldots, n\}$. Then $\{S(\alpha | n) : n \in N$ and $\alpha \in \Gamma\}$ is a base for Γ. For $\alpha \in \Gamma$ and $V \in \mathcal{F}$ such that $V \subset \alpha(n)$ let $D(\alpha | n ; V)$ denote $(S(\alpha | n) \times V) \cap Y$. Then $\mathcal{B} = \{D(\alpha | n ; V) : \alpha \in \Gamma, n \in N, V \in \mathcal{F}, \text{ and } V \subset \alpha(n)\}$ is a base for Y. Since $\mathcal{N}(\mathcal{F}) = \text{weight of } X$, $\mathcal{N}(\mathcal{B}) = \text{weight of } X$.

Suppose $\alpha \in \Gamma$, $V \in \mathcal{F}$, and $V \subset \alpha(n)$. Then clearly $\phi[D(\alpha | n ; V)] \subset V$. If $x \in V$, then by Lemma 2 there exists $B \in \mathcal{C}$ such that $x \in B \subset V$. Let $\beta \in \Gamma$ be such that $\{\beta(k) : k \in N\}$ is a base at B. There exists k such that $\beta(k) \subset V$. The sequence α' such that $\alpha'(j) = \alpha(j), 1 \leq j \leq n$
and \(\alpha'(j) = \beta(k + j) \) for \(j > n \) is admissible and \((\alpha', x) \in D(\alpha| n; V) \). Hence \(\phi[D(\alpha| n; V)] = V \). Therefore \(\phi \) is an open mapping.

If it is shown that \(\theta \) is a perfect mapping, then by Arhangel'skiï's theorem cited in §2, \(Y \) is a paracompact \(p \)-space. Suppose \(\alpha \in \Gamma \) and \(B = \cap \{ \alpha(k): k \in N \} \). Then, since \(B \) is bicompact, \(\theta^{-1}(\alpha) = \{ \alpha \} \times B \) is bicompact. Hence \(\theta \) is a bicompact mapping. To show that \(\theta \) is closed suppose \(W \) is open in \(Y \) and \(\theta^{-1}(\alpha) \subset W \). There exist \(m \in N \) and sets \(D_k = D(\alpha_k| n(k); V_k) \in \Theta \) intersecting \(\theta^{-1}(\alpha) \) for \(k = 1, \ldots, m \), such that \(\theta^{-1}(\alpha) \subset \bigcup \{ D_k: k \leq m \} \subset W \). Since \(\theta^{-1}(\alpha) \) meets each \(D_k \), \(\alpha_k(j) = \alpha(j), 1 \leq j \leq n(k), 1 \leq k \leq m \). Also \(B \subset \bigcup \{ V_k: k \leq m \} \). By conditions (2) and (3) on admissible sequences there exists \(n \geq \max \{ n(k): k \leq m \} \) such that \(B \subset \alpha(n) \subset \bigcup \{ V_k: k \leq m \} \). If \((\alpha', x) \in D = D(\alpha| n); (\alpha(n)) \), then \(x \in V_k \) for some \(k \), and therefore \((\alpha', x) \in D_k \subset W \). Hence \(\theta^{-1}(\alpha) \subset D \subset W \). Since any \(\theta^{-1}(\alpha') \) intersecting \(D \) is a subset of \(D \), \(D = \theta^{-1}(\theta(D)) \). It follows that \(\theta \) is a closed mapping.

Remark 4. If the space \(X \) is \(T_0 \) and first-countable, then \(\Theta \) in the above proof can be taken as the collection \(\{ \{ x \}: x \in X \} \). Then each admissible sequence \(\alpha \) is such that \(\cap \{ \alpha(k): k \in N \} = \{ x \} \) for some \(x \in X \). It follows that \(Y \) is homeomorphic to \(\Gamma \) and thus \(X \) is an open continuous image of \(\Gamma \). This proves Ponomarev's theorem.

REFERENCES

3. A. V. Arhangel'skiï, On a class of spaces containing all metric and all locally bicompact spaces, Mat. Sb. 67 (1965), 55–85. (Russian)

Sandia Laboratories, Albuquerque, New Mexico