LEBESGUE CHARACTERIZATIONS OF UNIFORMITY-DIMENSION FUNCTIONS

JAMES C. SMITH, JR.

1. Introduction. Let \((X, p)\) be a metric space, let \(\text{dim}(X)\) be the covering dimension of \(X\), and let \(d_0(X, p)\) be the metric dimension of \(X\). Let \(d_2\) and \(d_3\) denote the metric-dependent dimension functions introduced by Nagami and Roberts \([7]\), and let \(d_6\) and \(d_7\) be the metric-dependent dimension functions introduced by Smith \([9]\). Characterizations of some of these metric-dependent dimension functions in terms of Lebesgue covers have been given by Egorov \([1]\), Wilkinson \([11]\) and Smith \([9]\). These results are described by the following table.

<table>
<thead>
<tr>
<th>Metric-dependent dimension function</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_4(X, p)\leq n)</td>
<td>Every Lebesgue cover consisting of (n+2) members has an open refinement of order (\leq n+1)</td>
</tr>
<tr>
<td>(d_6(X, p)\leq n)</td>
<td>Every finite Lebesgue cover has an open refinement of order (\leq n+1)</td>
</tr>
<tr>
<td>(d_8(X, p)\leq n)</td>
<td>Every countable Lebesgue cover has an open refinement of order (\leq n+1)</td>
</tr>
<tr>
<td>(d_0(X, p)\leq n)</td>
<td>Every locally finite Lebesgue cover has an open refinement of order (\leq n+1)</td>
</tr>
<tr>
<td>(d_5(X, p)\leq n)</td>
<td>Every Lebesgue cover has an open refinement of order (\leq n+1)</td>
</tr>
</tbody>
</table>

Soniat \([10]\) has generalized the dimension functions \(d_0\), \(d_2\) and \(d_3\) for uniform spaces and obtained Lebesgue-type characterizations for \(d_4\) and \(d_6\). In this paper we complete the above characterization table for uniform spaces. In §2 we develop Lebesgue cover properties for uniform spaces and characterize \(d_2\). In §§3 and 4 we generalize the dimension functions \(d_6\) and \(d_7\) to uniform spaces and characterize them in terms of Lebesgue covers.

Definition. Let \(X\) be a set and \(\mathcal{D} = \{D_\lambda : \lambda \in A\}\) be a family of collections of subsets of \(X\). For each \(\lambda \in A\), let \(\mathcal{D}_\lambda = \{D_\alpha : \alpha \in A_\lambda\}\). Then

\[
\bigwedge_{\lambda \in A} \{D_\lambda\} = \{\bigcap D_{\alpha(\lambda)} : \alpha(\lambda) \in A_\lambda, \lambda \in A\}.
\]

Received by the editors September 20, 1968.

164
Throughout this paper \(J \) will denote the set \(\{1, 2, \cdots, n+1\} \) and \(J'=J\cup\{n+2\} \), where the integer \(n \) will always be understood.

2. Characterization of \(d_2 \) for uniform spaces. The reader is referred to the papers by Nagami and Roberts [7], Smith [9], and Soniat [10] for the definitions of the dimension functions \(d_0, d_2, d_3, d_6 \) and \(d_7 \) and the generalizations of \(d_0, d_2, \) and \(d_3 \) to uniform spaces.

Definition 2.1. Let \(C \) and \(C' \) be subsets of a uniform space \((X, \mathcal{U})\). We say that \(C \) and \(C' \) are separated provided there exists \(U\in\mathcal{U} \) such that \((C\times C')\cap U=\emptyset\). If \(\mathcal{E} = \{C_\alpha, C'_\alpha : \alpha \in A\} \) is a family of pairs \((C_\alpha, C'_\alpha)\), then \(\mathcal{E} \) is called uniformly separated if there exists \(U\in\mathcal{U} \) such that \((C_\alpha\times C'_\alpha)\cap U=\emptyset \) for all \(\alpha \in A \).

Definition 2.2. A cover \(\mathcal{D} \) of a uniform space \((X, \mathcal{U})\) is called Lebesgue if there exists \(U\in\mathcal{U} \) such that \(\{U(x) : x \in X\} \) refines \(\mathcal{D} \).

Definition 2.3. A cover \(\mathcal{D} = \{D_\alpha : \alpha \in A\} \) of a uniform space \((X, \mathcal{U})\) is called \(\mathcal{U} \)-shrinkable if there exists some \(U\in\mathcal{U} \) and a cover \(\mathcal{T} = \{T_\alpha : \alpha \in A\} \) such that

1. \(T_\alpha \subset D_\alpha \) for all \(\alpha \in A \).
2. \(\{T_\alpha, X-D_\alpha : \alpha \in A\} \) is uniformly separated by \(U \).

Theorem 2.4. A cover \(\mathcal{D} \) of a uniform space \((X, \mathcal{U})\) is Lebesgue if and only if \(\mathcal{D} \) is \(\mathcal{U} \)-shrinkable.

Proof (Necessity). Let \(\mathcal{D} = \{D_\alpha : \alpha \in A\} \) be a Lebesgue cover of \((X, \mathcal{U})\). Then there exists \(U\in\mathcal{U} \) such that \(\{U(x) : x \in X\} \) refines \(\mathcal{D} \). Choose \(V\in\mathcal{U} \) such that \(V \) is symmetric and \(V^2 \subset U \). Define \(F_\alpha = \{x : V(x) \cap (X-D_\alpha) = \emptyset\} \) for all \(\alpha \in A \).

(i) We assert that \(\{F_\alpha : \alpha \in A\} \) covers \(X \). Clearly \(F_\alpha \subset D_\alpha \) for all \(\alpha \in A \). Let \(x \in D_\alpha - F_\alpha \). Then since \(\{U(x) : x \in X\} \) refines \(\mathcal{D} \), there exists \(\beta \in A \) such that \(V(x) \subset U(x) \subset D_\beta \). Hence \(V(x) \cap (X-D_\beta) = \emptyset \) so that \(x \in F_\beta \).

(ii) We now assert that \(\{F_\alpha, X-D_\alpha : \alpha \in A\} \) is uniformly separated by \(V \). Suppose there exists some \(\beta \in A \) such that \([F_\beta \times (X-D_\beta)] \cap V \neq \emptyset \). Let \((x, y) \in [F_\beta \times (X-D_\beta)] \cap V \). Then \(x \in F_\beta \), \(y \in X-D_\beta \) and \(X \in V(y) \) and \(y \in V(x) \). But \(x \in F_\beta \) implies \(V(x) \cap [X-D_\beta] = \emptyset \) so \(y \notin V(x) \), a contradiction.

Remark. It should be noted at this point that the cover \(\mathcal{F} = \{F_\alpha : \alpha \in A\} \) defined above is Lebesgue. If \(x \in X \), then there exists \(\beta \in A \) such that \(x \in U(x) \subset D_\beta \). Clearly \(x \in F_\beta \) and we assert that \(V(x) \subset F_\beta \). Let \(y \in V(x) \) and \(z \in V(y) \), so that \((x, y) \in V \) and \((y, z) \in V \). Hence \((x, z) \in V^2 \subset U \) and therefore \(z \in U(x) \subset D_\beta \). It now follows that \(V(y) \cap (X-D_\beta) = \emptyset \) and \(y \in F_\beta \). Thus \(V(x) \subset F_\beta \).
(Sufficiency). Suppose $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{A}\}$ is \mathcal{U}-shrinkable to $\mathcal{F} = \{F_\alpha : \alpha \in \mathcal{A}\}$, where $\{F_\alpha, X - D_\alpha : \alpha \in \mathcal{A}\}$ is uniformly separated by symmetric $U \subseteq \mathcal{U}$. Let $x \in X$. Since \mathcal{F} is a cover of X, there exists $\beta \in \mathcal{A}$ such that $x \in F_\beta$. Let $y \in U(x)$ so that $(x, y) \in U$. But

$$U \cap [F_\beta \times (X - D_\beta)] = \emptyset$$

and hence $y \in X - D_\beta$. Thus $y \in D_\beta$ and $U(x) \subseteq D_\beta$. Therefore

$$\{U(x) : x \in X\}$$

refines \mathcal{D} and \mathcal{D} is Lebesgue.

For normal uniform spaces (X, \mathcal{U}) Soniat has shown the following [10, Theorem 3.8].

Theorem 2.5. Let (X, \mathcal{U}) be a normal uniform space. Then $d_2(X, \mathcal{U}) \leq n$ if and only if for every uniformly separated collection $\{C_i, C'_i : i \in J\}$ of closed sets, there exists a closed collection $\{B_i : i \in J\}$ such that B_i separates C_i and C'_i and $\bigcap_{i \in J} B_i = \emptyset$.

Note. Here the separating sets B_i are subsets of X and separate C_i and C'_i in the usual sense and are not to be confused with elements of the uniformity \mathcal{U}.

The next theorem now follows directly from [9, Theorem 2.3] where the Lebesgue covers are now in the uniformity sense rather than the metric sense.

Theorem 2.6. Let (X, \mathcal{U}) be a completely normal uniform space. Then $d_2(X, \mathcal{U}) \leq n$ if and only if for every collection $\{D_i : i \in J\}$ of $n + 1$ binary Lebesgue covers of X, the cover $\mathcal{D} = \Lambda_{i \in J} D_i$ of X has an open refinement of order $\leq n + 1$.

We now obtain a Lebesgue characterization of (X, \mathcal{U}) analogous to [9, Theorem 2.4].

Theorem 2.7. Let (X, \mathcal{U}) be a completely normal uniform space. Then $d_2(X, \mathcal{U}) \leq n$ if and only if every Lebesgue cover $\mathcal{D} = \{D_1, D_2, \ldots, D_{n+2}\}$ of X consisting of $n + 2$ members has an open refinement of order $\leq n + 1$.

Proof (Necessity). Suppose $d_2(X, \mathcal{U}) \leq n$, and let $\mathcal{D} = \{D_1, D_2, \ldots, D_{n+2}\}$ be a Lebesgue cover of X. Then there exists $U \subseteq \mathcal{U}$ such that $\{U(x) : x \in X\}$ refines \mathcal{D}. By Theorem 2.4 above we can uniformly shrink \mathcal{D} to a closed Lebesgue cover $\mathcal{F} = \{F_1, F_2, \ldots, F_{n+2}\}$ such that $F_i \subseteq D_i$ for $i \in J'$. Then for each $i \in J$, $D_i = \{D_i, X - F_i\}$ is a binary Lebesgue cover of X. By Theorem 2.6 above $\mathcal{D}^* = \Lambda_{i \in J} D_i$ has an open refinement \mathcal{D}^{**} such that $\text{ord}(\mathcal{D}^{**}) \leq n + 1$. But \mathcal{D}^* refines \mathcal{D} since \mathcal{F} covers X. Hence \mathcal{D}^{**} is the desired open cover.
(Sufficiency). Let \(\{ C_i, C_i' : i \in J \} \) be a collection of \(n+1 \) pairs of closed sets which are uniformly separated by \(U \subseteq \mathcal{U} \). Choose \(K \) and \(V \) symmetric in \(\mathcal{U} \) such that \(K \subseteq K_i \subseteq \forall \subseteq V \subseteq U \). Now define \(\mathcal{K} = \{ K(x) : x \in X \} \) and \(\mathcal{V} = \{ V(x) : x \in X \} \). Define for each \(i \in J \), \(D_i = \text{St}(C_i, \mathcal{V}) \) and \(H_i = \text{St}(C_i, \mathcal{K}) \) where \(\text{St}(C_i, \mathcal{K}) \) is the star of \(C_i \) with respect to the cover \(\mathcal{K} \). Let \(D_{n+2} = X - \bigcup_{i \in J} H_i \). Clearly \(\Delta = \{ D_1, D_2, \ldots, D_{n+2} \} \) is an open Lebesgue cover of \(X \). Hence \(\Delta \) has an open refinement \(\mathcal{A} = \{ R_\alpha : \alpha \in A \} \) such that the \(\text{ord}(\mathcal{A}) \leq n+1 \). Define \(f \) to be the function, \(f : A \rightarrow J' \), such that

\[
f(\alpha) = \{ \text{smallest integer } i \in J' \text{ such that } R_\alpha \subseteq D_i \}.
\]

Now define \(\mathcal{R}_i = \bigcup \{ R_\alpha : i = \alpha \} \) for each \(i \in J' \). Hence \(\mathcal{A} = \{ R_1, R_2, \ldots, R_{n+2} \} \) may replace \(\{ R_\alpha : \alpha \in A \} \). Choose \(K^* \in \mathcal{K} \) such that \((K^*)^2 \subseteq K \) and define

\[
\mathcal{K}^* = \{ K^*(x) : x \in X \}, \quad E_i = \{ x : x \in C_i, x \in R_i \},
\]

\[
S_i = \text{St}(E_i, \mathcal{K}^*), \quad R_i^* = R_i \cup S_i, \quad \text{for } i \in J, \quad \text{and } R_{n+2}^* = R_{n+2}.
\]

Now \(S_i \cap D_{n+2} = \emptyset \); for \(x \in S_i \) implies that \(x \in \text{St}(E_i, \mathcal{K}^*) \subseteq \text{St}(C_i, \mathcal{K}) \subseteq H_i \) so that \(x \notin D_{n+2} \). Hence \(\mathcal{A}^* = \{ R_1^*, R_2^*, \ldots, R_{n+2}^* \} \) is an open cover of \(X \) such that \(\text{ord}(\mathcal{A}^*) \leq n+1 \) and \(C_i \subseteq R_i^* \) for \(i \in J \).

Since \(\mathcal{A}^* \) is finite there exists by [5, Lemma 1.5] a closed cover \(\mathcal{F} = \{ F_1, F_2, \ldots, F_{n+2} \} \) of \(X \) such that \(C_i \subseteq F_i \subseteq R_i^* \) for \(i \in J \), and \(F_{n+2} \subseteq R_{n+2}^* \). X normal implies that there exist open sets \(0_i \) such that \(F_i \subseteq 0_i \subseteq \text{int} R_i^* \) for \(i \in J \). Define \(B_i = 0_i - 0_i \) for \(i \in J \). Clearly \(B_i \) is a closed set separating \(C_i \) and \(C_i' \) for \(i \in J \). We assert \(\bigcap_{i \in J} B_i = \emptyset \). Suppose there exists \(x \in \bigcap_{i \in J} B_i \). Then \(x \in F_i \) for each \(i \in J \). Hence \(x \in F_{n+2} \subseteq R_{n+2}^* \). But \(x \in R_i^* \) for all \(i \in J \) and hence \(x \in \bigcap_{i \in J} R_i^* \). This is a contradiction since \(\text{ord}(\mathcal{A}^*) \leq n+1 \). Hence \(d_2(X, \mathcal{U}) \leq n \).

3. The uniformity dimension function \(d_2 \)

Definition 3.1. Let \((X, \mathcal{U})\) be a uniform space. If \(X = \emptyset \), \(d_2(X, \mathcal{U}) = -1 \). Otherwise \(d_2(X, \mathcal{U}) \leq n \) if \((X, \mathcal{U})\) satisfies this condition:

\((D_2) \) Given any countable collection of closed pairs \(\{ C_i, C_i' : i = 1, 2, \ldots \} \) such that

1. \(\{ C_i, C_i' : i = 1, 2, \ldots \} \) is uniformly separated,
2. \(\{ X - C_i : i = 1, 2, \ldots \} \) is locally finite,

then there exist closed sets \(B_i \) separating \(C_i \) and \(C_i' \) such that \(\text{ord}(B_i : i = 1, 2, \ldots) \leq n \).

Theorem 3.2. Let \((X, \mathcal{U})\) be a paracompact uniform space. Then \(d_2(X, \mathcal{U}) \leq n \) if and only if every countable, locally finite Lebesgue cover of \(X \) has an open refinement of order \(\leq n+1 \).
Proof. The proof is essentially the same proof as that of [9, Theorem 3.2].

Theorem 3.3. Let \((X, \mathcal{U})\) be a uniform space. Then every countable Lebesgue cover of \(X\) has a countable locally finite Lebesgue refinement.

Proof. Let \(\mathcal{D} = \{D_1, D_2, \ldots \}\) be a Lebesgue cover of \(X\). Then there exists \(U \in \mathcal{U}\) such that \(\{U(x) : x \in X\}\) refines \(\mathcal{D}\). Choose \(V\) and \(K\) symmetric in \(\mathcal{U}\) such that \(K \subseteq K' \subseteq V \subseteq V' \subseteq U\) and define \(F_i = \{x : V(x) \cap [X - D_i] = \emptyset\}\) for all \(i\). As before \(\mathcal{F} = \{F_i : i = 1, 2, \ldots \}\) is a Lebesgue cover of \(X\). Now let

\[R_i = D_i - \bigcup_{j < i} \text{St}(F_j, K) \], where \(K = \{K(x) : x \in X\}\).

Clearly \(\mathcal{R} = \{R_1, R_2, \ldots \}\) refines \(\mathcal{D}\) in a 1–1 manner. We assert that \(\mathcal{R}\) is a locally finite Lebesgue cover of \(X\).

(i) Let \(x \in X\). Choose the smallest \(i\) such that \(x \in \text{St}(F_i, K)\). Then \(x \in D_i - \bigcup_{j < i} \text{St}(F_j, K) = R_i\) and hence \(R\) covers \(X\). Also \(\text{St}(F_i, K) \cap R_i = \emptyset\) for all \(i > j\) so that \(\mathcal{R}\) is locally finite.

(ii) Let \(x \in X\). Choose the smallest \(i\) such that \(K(x) \cap \text{St}(F_i, K) \neq \emptyset\). Clearly \(K(x) \subseteq X - \bigcup_{j < i} \text{St}(F_j, K)\). We claim that \(K(x) \subseteq D_i\).

Let \(y \in K(x)\). Since \(K(x)\) can be open, there exists \(r \in X\) such that \(r \in K(x) \cap \text{St}(F_i, K)\). Thus there exist \(s \in X\) and \(t \in F_i\) such that \(r \in K(s)\) and \(t \in K(s) \cap F_i\). Therefore we have \(t \in K(s), s \in K(r), r \in K(x)\), and \(x \in K(y)\). Hence \((t, y) \in K' \subseteq V\) so that \(y \in V(t)\). By definition \(t \in F_i\) implies that \(V(t) \cap [X - D_i] = \emptyset\). Thus \(y \in V(t) \subseteq D_i\), so that \(K(x) \subseteq D_i\).

We now have a Lebesgue characterization for \(d_\mathcal{U}\).

Theorem 3.4. Let \((X, \mathcal{U})\) be a paracompact uniform space. Then \(d_\mathcal{U}(X, \mathcal{U}) \leq n\) if and only if every countable Lebesgue cover has an open refinement of order \(\leq n + 1\).

4. The uniformity dimension function \(d_\mathcal{U}\)

Definition 4.1. Let \((X, \mathcal{U})\) be a uniform space. If \(X = \emptyset\), then \(d_\mathcal{U}(X, \mathcal{U}) = -1\). Otherwise, \(d_\mathcal{U}(X, \mathcal{U}) \leq n\) if \((X, \mathcal{U})\) satisfies this condition.

\((D_7)\) Given any collection of closed pairs \(\{C_\alpha, C'_\alpha : \alpha \in A\}\) such that

1. \(\{C_\alpha, C'_\alpha : \alpha \in A\}\) are uniformly separated.
2. \(\{X - C_\alpha : \alpha \in A\}\) is locally finite.

Then there exist closed sets \(B_\alpha\) separating \(C_\alpha\) and \(C'_\alpha\) such that \(\operatorname{ord} \{B_\alpha : \alpha \in A\} \leq n\).
Theorem 4.2. Let \((X, \mathcal{U})\) be a paracompact uniform space. Then
\[d_1(X, \mathcal{U}) \leq n \text{ if and only if every locally finite Lebesgue cover of } X \text{ has a refinement of order } \leq n + 1. \]

Proof. The proof is essentially the same as proof of [9, Theorem 4.2]. Paracompactness is now required so that [6, Theorem 1.3] is applicable.

5. Conclusion. The table in paragraph 1 is now complete for uniform spaces \((X, \mathcal{U})\). The Lebesgue characterizations are exactly the same as for metric spaces but complete normality is required for the dimension functions \(d_2, d_3\) and paracompactness is required for \(d_4, d_5\) and \(d_6\).

References

Virginia Polytechnic Institute