Asymptotic convergence of operators in Hilbert space
HTML articles powered by AMS MathViewer
- by Frank Gilfeather
- Proc. Amer. Math. Soc. 22 (1969), 69-76
- DOI: https://doi.org/10.1090/S0002-9939-1969-0247508-2
- PDF | Request permission
References
- I. Amemiya and T. Andô, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239–244. MR 187116
- M. S. Brodskiĭ and M. S. Livšic, Spectral analysis of non-selfadjoint operators and intermediate systems, Amer. Math. Soc. Transl. (2) 13 (1960), 265–346. MR 0113144
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4
- Nelson Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217–274. MR 104865, DOI 10.1090/S0002-9904-1958-10219-0
- Shaul R. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math. 13 (1963), 551–562. MR 163170
- Israel Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96–99. MR 141978
- Béla Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89–93 (English, with Russian and Hungarian summaries). MR 108722 B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de l’espace de Hilbert, Akad. Kiadó, Budapest, 1967.
- Béla Sz.-Nagy and Ciprian Foiaş, Sur les contractions de l’espace de Hilbert. IV, Acta Sci. Math. (Szeged) 21 (1960), 251–259 (French). MR 126149 F. Riesz and B. Sz.-Nagy, Functional analysis, Akad. Kiadó, Budapest, 1953.
- Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472. MR 112040, DOI 10.1002/cpa.3160130309
- J. Schwartz, On spectral operators in Hilbert space with compact imaginary part, Comm. Pure Appl. Math. 15 (1962), 95–97. MR 158262, DOI 10.1002/cpa.3160150108
- Noboru Suzuki, The structure of spectral operators with completely continuous imaginary part, Proc. Amer. Math. Soc. 22 (1969), 82–84. MR 247517, DOI 10.1090/S0002-9939-1969-0247517-3
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 69-76
- MSC: Primary 47.30
- DOI: https://doi.org/10.1090/S0002-9939-1969-0247508-2
- MathSciNet review: 0247508