GROUPS WHICH ARE COGROUPS

M. L. CURTIS AND J. DUGUNDJI

It is the purpose of this note to give an elementary proof that S^0, S^1, S^3 are the only spheres which can be made into topological groups. This was proved by Samelson in [3]. He showed that a compact Lie group which is a homotopy sphere must have rank 1, and then that a compact Lie group of rank 1 has dimension 1 or 3. We get the first part easily by showing that a compact Lie group which is an H-cogroup (e.g., a suspension) must have rank 1. The second part closely follows Samelson's proof. For basic facts about H-groups and H-cogroups the reader is referred to §§5 and 6 of Chapter I of Spanier [5].

If G is an H-group which is also an H-cogroup, then the set $[G, G]_0$ of pointed homotopy classes is an abelian group with its operation given equally by the H-cogroup structure on the domain G or the H-group structure on the range G [5, page 44]. From this the following lemma is immediate.

Lemma 1. If G is an H-group which is also an H-cogroup, $i: G \rightarrow G$ is the identity map and $\psi: G \rightarrow G$ is the squaring map $x \mapsto x^2$, then

$$[\psi] = 2[i] \in [G, G]_0.$$

Next we need a special case of a result due to Hopf [2].

Lemma 2. If G is a compact connected Lie group of rank r and ψ is the squaring map, then degree $\psi = 2^r$.

Proof. We will count the algebraic number of times a point $y \in G$ is covered. We may assume y is regular (i.e., lies in a unique maximal torus) because the set of singular (not regular) points forms a set of dimension less than the dimension of G (indeed, the dimension is at most $\dim G - 3$; see [4, p. 19]).

Let T be the unique maximal torus containing y. Since $\dim T = r$ we easily find that y has exactly 2^r square roots in T. If z is any other square root of y, then z lies in some other maximal torus $T' \neq T$ (since maximal tori cover G). But then $y = z^2 \in T'$, contradicting the regularity of y. Thus there are exactly 2^r points $x \in G$ with $\psi(x) = y$.

We assert that all such x cover y with the same orientation. Given x with $x^2 = y$, let U be a small open neighborhood of x containing no other roots of y and such that U is star-shaped relative to x. Then

Received by the editors September 13, 1968.

235
$\psi: U \to G$

is a diffeomorphism (if U is small enough). Furthermore, if $T_x: U \to G$ is translation by x it is easy to get an isotopy between ψ and T_x on U. Since T_x preserves orientation, so does ψ. Hence a neighborhood of y is covered 2^r times with the same orientation. Hence the degree of ψ is 2^r.

From Lemmas 1 and 2 we get

Theorem 1. If a compact Lie group G is also an H-cogroup, then $\text{rank } G = 1$.

Corollary. If $n \geq 1$ and S^n can be made into a topological group, then S^n is a Lie group of rank 1.

Proof. A group manifold is a Lie group, and S^n is compact, so Theorem 1 applies.

Theorem 2 (following Samelson). If G is a compact Lie group of rank 1, and $\dim G = n > 1$, then $n = 3$.

Proof. Since G is compact we can get an inner product on its Lie algebra \mathfrak{g} such that the adjoint representation

$$\text{Ad}: G \to GL(\mathfrak{g})$$

is such that each $\text{Ad}(g)$ is orthogonal; i.e., $\text{Ad}(G) \subset O(\mathfrak{g})$ the orthogonal group on \mathfrak{g}.

Let $T = S^1$ be a maximal torus of G and let X be a unit vector in \mathfrak{g} tangent to T. Define

$$\phi': G \to S^{n-1} \subset \mathfrak{g}$$

by $\phi'(g) = \text{Ad } gX$.

Lemma. ϕ' induces a homeomorphism $\phi: G/T \to S^{n-1}$.

Proof of Lemma. First off, ϕ' does induce ϕ since if $t \in T$

$$\phi'(gt) = \text{Ad}(gt)X = \text{Ad}(g)\text{Ad}(t)X = \text{Ad}(g)X = \phi'(g).$$

Second, ϕ is injective for if

$$\text{Ad } gX = \text{Ad } hX,$$

then $\text{Ad}(gh^{-1})X = X$. Thus $\text{Ad}(gh^{-1})$ leaves the one-dimensional Lie algebra $\mathfrak{L}(T)$ of T elementwise fixed. Since T is maximal this implies $gh^{-1} \in T$.

Finally, G/T is a compact closed $n - 1$ manifold and it follows that ϕ is surjective, so the Lemma is proved.
Since \(\phi \) maps \(G/T \) onto \(S^{n-1} \) it follows that there exists \(g_0 \in G \) such that \(\text{Ad} \ g_0 \ X = -X \). This allows us to get a map \(f : S^2 \to S^{n-1} \) as follows. Let \(\omega : [0, 1] \to G \) be a path from the identity \(e \) to \(g_0 \). Then since \(T = S^1 \) we have a map

\[
F : S^1 \times I \to G
\]
given by \(F(t, \tau) = \omega(t) \omega(t)^{-1} \). Then \(F(S^1 \times 0) \subseteq S^1 \) and \(F(S^1 \times 1) \subseteq S^1 \) so \(F \) induces a map \(f : S^2 \to G/S^1 = S^{n-1} \). We assert that \(f \) is essential.

If \(f \) is nullhomotopic, we can cover a nullhomotopy in \(G \) to get a homotopy

\[
\Phi : T \times I \to T
\]
with \(\Phi_0 = F(-, 0) \) the identity and \(\Phi_1 = F(1, 1) \) sends \(t \) to \(t^{-1} \). No such homotopy exists, so \(f \) is essential and we conclude that \(S^{n-1} = S^2 \) and \(n = 3 \).

Theorem 3. The \(n \)-sphere \(S^n \) (\(n > 0 \)) can be made into a topological group if and only if \(n = 1 \) or \(n = 3 \).

Proof. Use Theorem 2 and the corollary to Theorem 1.

Remark. \(SO(3) \) is a compact Lie group of rank 1 and dimension 3, so that it could be a cogroup as far as the results above are concerned. But Hilton [1] has shown that a comultiplication on \(X \) implies \(X \) has Lusternik-Schnirelmann category \(\leq 2 \), whereas \(SO(3) = P^3 \) has category 4.

References