PRODUCTS OF k'-SPACES
R. W. BAGLEY AND D. D. WEDDINGTON

We call a topological space X a k'-space if $A \subseteq X, x \in \overline{A}$ implies the existence of a compact subset K of X such that $x \in \text{Cl}(A \cap K)$ (where Cl stands for closure) [1]. A characterization of k'-spaces is given in [8]. E. A. Michael has shown that a Hausdorff space is locally compact if its product with every k'-space is a k-space [6]. We obtain an analogous result for k'-spaces which implies the existence of k'-spaces which are not k'-spaces. It is stated in [1] that such spaces exist as opposed to remarks in [4] and [7]. We show that a T_1 space X is discrete if $X \times Y$ is a k'-space for every k'-space Y. Thus a nontrivial product theorem for k'-spaces must involve additional conditions on both factors, in contrast to Cohen's Theorem [3] ($X \times Y$ is a k-space for X locally compact and Y a k'-space—see for instance [2]). We do show that $X \times Y$ is a k'-space if both X and Y are T_1, k'-spaces and $X \times Y$ has a nested neighborhood base at each of its points. Also the product of two T_1 spaces with a nested neighborhood base at each point is a k'-space if one of the spaces is a k'-space and the other is a k-space.

Theorem 1. If X is a nondiscrete T_1 space, then there is a k'-space Y such that $X \times Y$ is not a k'-space.

Proof. Let $\{x_\alpha : \alpha \in D\}$ be a net converging to x such that $x_\alpha \neq x$, $\alpha \in D$. Let $Y_1 = \{(\alpha, n) : \alpha \in D$ and $n = 1, 2, 3, \cdots \}$ and let $Y = Y_1 \cup \{z\}$. The topology on Y is as follows: Y_1 is discrete and the open sets containing z contain all but a finite number of elements of each set $A = \{(\alpha, n) : n = 1, 2, 3, \cdots \}$ for $\alpha \in D$. It is easy to see that Y is a k'-space since each compact subset intersects only finitely many of the sets A. On the other hand (x, z) is a limit point of the set $C = \{(x_\alpha, (\alpha, n)) : \alpha \in D, n = 1, 2, 3, \cdots \}$ but clearly not a limit point of $C \cap K$ for any compact set K. Thus $X \times Y$ is not a k'-space.

Remark. If X is a nondiscrete locally compact T_1 space, then there is a k'-space Y (as in the proof of the theorem) such that $X \times Y$ is a k-space which is not a k'-space. The space Y is paracompact. As a matter of fact every open cover has a discrete open refinement. Also Y can be slightly modified to make it a CW-complex.

Before proving Theorem 2 we need a lemma on product spaces with nested neighborhood bases. From this point on we assume that X and Y are T_1 spaces.

Received by the editors August 14, 1968.
Lemma. If \(X \times Y \) has a nested neighborhood base at \((x, y) \in \overline{A} - A \) and there are neighborhoods \(U \) of \(x \) and \(V \) of \(y \) such that \(\{x\} \times V \cap A = \emptyset \) and \(U \times \{y\} \cap A = \emptyset \), then there is a net \(\{(x_\alpha, y_\alpha) : \alpha \in D\} \) in \(A \) which converges to \((x, y) \) and, for each \(\alpha_0 \in D \), there are neighborhoods \(R \) of \(x \) and \(S \) of \(y \) such that \(x_\alpha \notin R, y_\alpha \notin S \) for \(\alpha < \alpha_0 \).

Proof. We can choose a nested neighborhood base at \((x, y) \) of the form \(\{U_\alpha \times V_\alpha : \alpha \in D\} \) where \(D \) is directed as follows: \(\alpha < \beta \) iff \(U_\alpha \times V_\alpha \supset U_\beta \times V_\beta \). We well order the set \(\emptyset = \{U_\alpha \times V_\alpha : \alpha \in D\} \) by \(\prec \) and for each \(\alpha \in D \) choose the first element \(U_\alpha \times V_\alpha \) of \(\emptyset \) such that \((U_\alpha - U_\beta \times V_\alpha - V_\beta) \cap A \neq \emptyset \). If for some fixed \(\alpha \) no such choice is possible, then \(A \cap (\{U_\alpha - x \times V_\alpha - y \} \cap (x \times V_\alpha - \{x\} \times V_\alpha - \{y\})) \). This contradicts the fact that \((x, y) \in \overline{A} - A \). Now, for each \(\alpha \in D \), we take \((x_\alpha, y_\alpha) \in (U_\alpha - U_\beta \times V_\alpha - V_\beta) \cap A \) where \(U_\beta \times V_\beta \) is chosen as indicated above. Let \(\alpha_0 \in D \) and let \(R = U_{\beta_0}, S = V_{\beta_0} \) again choosing \(\beta_0 \) such that \(U_{\beta_0} \times V_{\beta_0} \) is the first element of \(\emptyset \) satisfying \((U_{\alpha_0} - U_{\beta_0} \times V_{\alpha_0} - V_{\beta_0}) \cap A \neq \emptyset \). We complete the proof by showing that \(x_\alpha \notin U_{\beta_0} \) and \(y_\alpha \notin V_{\beta_0} \) for \(\alpha < \alpha_0 \). Suppose there is \(\alpha < \alpha_0 \) such that \(x_\alpha \in U_{\beta_0} \) or \(y_\alpha \in V_{\beta_0} \). Since \(U_{\beta_0} \times V_{\beta_0} \subset U_{\alpha_0} \times V_{\alpha_0} \subset U_\alpha \times V_\alpha, (U_\alpha - U_{\beta_0} \times V_\alpha - V_{\beta_0}) \cap A \neq \emptyset \). It follows that \(U_\beta \times V_\beta \subset U_{\alpha_0} \times V_{\alpha_0} \). Since \(x_\alpha \notin U_{\beta_0} \) and \(y_\alpha \notin V_{\beta_0} \), we have \(U_\beta \times V_\beta \subset U_{\alpha_0} \times V_{\alpha_0} \). This implies that \(U_{\beta_0} \times V_{\beta_0} \subset U_\beta \times V_\beta \) which is a contradiction. This completes the proof.

By a routine use of the definition of subnet \([5]\) we can establish the fact that any net in \(\{x_\alpha\} \) (resp. \(\{y_\alpha\} \)) which converges to \(x \) (resp. \(y \)) is a subnet of \(\{x_\alpha\} \) (resp. \(\{y_\alpha\} \)). We use this fact in the proof of Theorem 2. We also use the following characterization of \(k \)-spaces established in \([8]\): A topological space \(X \) is a \(k \)-space iff, for each subset \(A \) and \(x \in \overline{A} \), there is a closed \(k \)-subspace \(C \) such that \(x \in \text{Cl}(A \cap C) \).

Theorem 2. If \(X \) is a \(k \)-space and \(Y \) is a \(k \)-space \((k \)-space) and \(X \times Y \) has a nested neighborhood base at each point, then \(X \times Y \) is a \(k \)-space \((k \)-space).

Proof. Let \(A \) be a subset of \(X \times Y \) and let \(x \in \overline{A} - A \). If the neighborhoods \(U \) and \(V \) of the lemma do not exist, then our conclusion follows routinely. Thus there is a net \(\{(x_\alpha, y_\alpha)\} \) in \(A \) converging to \((x, y) \) and satisfying the conclusion of the lemma. Since \(X \) is a
there is a compact subset K of X such that $x \in \text{Cl}(\{x_\alpha\} \cap K)$.
Thus there is a net $\{x_\gamma\}$ in $\{x_\alpha\} \cap K$ which converges to x. By the
note which follows the proof of the lemma $\{x_\gamma\}$ is a subnet of $\{x_\alpha\}$
and $\{y_\gamma\}$ converges to y, being a subnet of $\{y_\alpha\}$. Since Y is a k'-space,
there is a closed k-subspace C of Y (in case Y is a k'-space C can be
chosen compact) such that $y \in \text{Cl}(\{y_\gamma\} \cap C)$. Finally we obtain a
subnet of $\{(x_\alpha, y_\alpha)\}$ in $K \times C \cap A$. Thus $(x, y) \in \text{Cl}(K \times C \cap A)$. If C
is a k-space, then $K \times C$ is a k-space [2] and if C is compact $K \times C$
is also. Thus, in case Y is a k'-space, $X \times Y$ is a k-space and a k'-space
when Y is.

Bibliography

 Dokl. 4 (1963), 561–564.
 Math. Soc. 17 (1966), 703–705.
 77–80.
4. Z. Frolik, *Topologically complete spaces (summary of author's results)*, Comment.
 Gables, Fla., 1968.

University of Miami