D-SEMIGROUPS

JAMES W. STEPP

If \(G \) is a topological group, \(G_0 \) will denote the identity component.

Definition 1. Let \(\mathcal{C} \) denote the full subcategory of the category of locally compact abelian groups whose objects \(G \) have the property that \(G/G_0 \) is a union of compact groups.

In [3] K. H. Hofmann described those locally compact semigroups which contain a proper dense maximal subgroup whose complement is compact and thus a group. Here we describe those locally compact semigroups which contain a dense subgroup \(G \in \mathcal{C} \) whose complement is a group.

If \(S \) is a topological semigroup, \(E(S) \) will denote the set of idempotents of \(S \) and \(A^* \) will denote the closure of \(A \) in \(S \) where \(A \subseteq S \). We use \(R^n \) to denote the real \(n \)-dimensional vector group.

Definition 2. A topological semigroup will be called a \(D \)-semigroup if \(S \) satisfies the following hypotheses:

(i) \(S \) is a locally compact Hausdorff semigroup.
(ii) \(E(S) \) contains at least two elements 1 and \(e \).
(iii) \(H(1)^* = S \).
(iv) \(eH(1) \) is a topological group.

Definition 3. A Hausdorff semigroup \(S \) will be said to be \(H \)-closed if \(S \) contained in a Hausdorff semigroup \(T \) as a subsemigroup implies \(S \) is a closed subspace of \(T \).

The following theorem is a result of K. H. Hofmann [3] along with the observation that a \(D \)-semigroup with \(H(e) \) compact is \(H \)-closed [7].

Theorem 1. Let \(S \) be a \(D \)-semigroup with \(H(e) \) compact and \(H(e) \cap H(1) \) a \(D \)-semigroup.

Then

(i) \(S = H(e) \cup H(1) \).
(ii) **Structure of** \(H(1) \). There is a maximal normal compact subgroup \(C \) and a subgroup \(M \), which is either a one-parameter group isomorphic to \(R \) or an infinite cyclic group, and \(H(1) = MC \), \(M \cap C = \{1\} \).
(iii) **The closure** \(M^* \) of \(M \) is a disjoint union of \(M \) and an abelian compact subgroup \(A \) of \(H(e) \) in which \(Me \) is dense.

Presented to the Society January 24, 1968 under the title Topological groups in the boundary of a locally compact connected abelian group; received by the editors October 23, 1968.

1 The author wishes to thank the referee for pointing out that our original assumption that \(G/G_0 \) is compact could be weakened to \(G/G_0 \) is the union of compact groups. His remarks also contributed to shorter and more elegant arguments.
For $G \in \mathcal{C}$, \hat{G} will denote the group of characters of G. For a morphism $t: G \rightarrow H$ in \mathcal{C}, $t: \hat{H} \rightarrow \hat{G}$ will be the morphism defined by $t(\alpha) = \alpha i$.

Lemma 1. For locally compact abelian groups the following statements are equivalent:

(i) $G \in \mathcal{C}$.

(ii) $G \cong \mathbb{R}^n \times K$ where K is a locally compact abelian group which is a union of compact subgroups.

(iii) $(\hat{G})_0 \cong \mathbb{R}^n$.

Proof. One has the general structure theorem [1, p. 389].

(I) A locally compact abelian group G is topologically isomorphic with $\mathbb{R}^n \times K$, where K is a locally compact abelian group containing a compact open subgroup. If G is topologically isomorphic with $\mathbb{R}^n \times K_1$ and K_1 contains a compact open subgroup, then $m = n$.

(i)\implies(ii) If $G \cong \mathbb{R}^n \times K$ where K is a locally compact abelian group containing a compact open subgroup, then $G/Go \cong K/K_0$ and K_0 is compact by (I). Thus G/Go is a union of compact groups if and only if K/K_0 is a union of compact groups if and only if K is a union of compact groups.

(ii)\implies(iii) For an abelian locally compact group K, K is a union of compact groups if and only if it is a totally disconnected [1, 383]. Thus $(\hat{G})_0 \cong \mathbb{R}^n$ if and only if $G \cong \mathbb{R}^n \times K$ where K is a union of compact subgroups.

Lemma 2. In the category of locally compact abelian groups \mathcal{C} is closed under epics.

Proof. Let $i: H \rightarrow G$ be an epic in the category of locally compact abelian groups with $H \in \mathcal{C}$. Then $t: \hat{H} \rightarrow \hat{G}$ is a monic, thus t is injective. Also, $t[(\hat{G})_0] \subseteq (\hat{H})_0 \cong \mathbb{R}^n$. Therefore $(\hat{G})_0 \cong \mathbb{R}^n$ and $G \in \mathcal{C}$ by Lemma 1.

Lemma 3. Let $i: G \rightarrow \mathbb{R}^n$ be an epic in \mathcal{C}. Then i has a right inverse.

Proof. The morphism $t: \hat{\mathbb{R}^n} \rightarrow \hat{G}$ is monic, thus injective. Also, $\hat{\mathbb{R}^n} \cong \mathbb{R}^n$ and $i(\hat{\mathbb{R}^n}) \subseteq (\hat{G})_0 \cong \mathbb{R}^n$. Thus $i(\hat{\mathbb{R}^n})$ splits in $(\hat{G})_0$, and $(\hat{G})_0$ splits in \hat{G} by (I). Thus t has a left inverse, and i has a right inverse.

Lemma 4. If $i: G \rightarrow H$ is an epic in \mathcal{C} and G/Go is compact, then H/Go is compact.

Proof. By (I) $G \cong \mathbb{R}^n \times K$ with a K a compact group. Hence, $\hat{G} \cong \mathbb{R}^n \times \hat{K}$ with \hat{K} discrete [1, 362]. Since t is monic, i is injective. By (I) and since $t^{-1}[(\hat{G})_0]$ is a closed subgroup of \hat{H}, $t^{-1}[(\hat{G})_0] \cong \mathbb{R}^n$
$\times K_1$ with K_1 totally disconnected. Since t is injective, K_1 is discrete. Since $(\hat{G})_0$ is open in \hat{G} it follows that $(\hat{H})_0$ is open in \hat{H}. Thus $H \cong R^p \times C$ with C a compact group.

If S is a D-semigroup, ϕ will denote the map from S to eS defined by $\phi(s) = es$, Ψ will denote the map from $H(1)$ to $H(e)$ defined by $\Psi(g) = eg$.

Theorem 2. Let S be a D-semigroup with $H(1) \subseteq C$. Then

(i) $H(e) \subseteq C$.

(ii) $H(1)$ contains a locally compact subgroup N and a vector subgroup V such that the closure $(eN)^\ast_{H(1)}$ of eN in $H(e)$ is a union of compact groups, $eV \cong V$, $V \cap N = \{1\}$, $H(1) = VN$, $eV \cap (eN)^\ast_{H(1)} = \{e\}$, $H(e) = V(eN)^\ast_{H(1)}$, and $N^\ast \cap H(e) = (eN)^\ast_{H(1)}$.

(iii) $H(1)$ contains a one-parameter group P which is topologically isomorphic to R and $(eP)^\ast$ is compact.

Proof. (i) Since $eH(1) \subseteq H(e) \subseteq (eH(1))^\ast$, $H(e)$ is a topological group [2]; thus $H(e)$ is locally compact [8]. Since $H(1)^\ast = S$, the morphism $\Psi : H(1) \rightarrow H(e)$ is an epic; thus $H(e) \subseteq C$ by Lemma 2.

(ii) By (I) and (i) there is a splitting surjection $\pi : H(e) \rightarrow W$ onto a vector group such that $\ker \pi$ is a union of compact subgroups. The morphism $\pi \Psi : H(1) \rightarrow W$ is epic in C and thus has a right inverse $i : W \rightarrow H(1)$ by Lemma 3. Let $V = i(W)$ and $N = \Psi^{-1}(\ker \pi)$. Let $r_1 : H(1) \rightarrow V$ be the corestriction of $i \Psi$ to its image; thus $r_1|_V = 1_V$.

Since $s = r_1(s)|_{r_1(s)^{-1}s}]$, $H(1) = VN$. Also, it follows that $eV \cong V$, $V \cap N = \{1\}$, $(eV) \cap (eN)^\ast_{H(1)} = \{e\}$, $H(e) = (eV)(eN)^\ast_{H(1)}$, and $(eN)^\ast \cap H(e) = \ker \pi$.

(iii) By (I) $\ker \pi$ contains a compact open (in $\ker \pi$) subgroup C. Then $\phi^{-1}(C)$ is a locally compact abelian semigroup which contains a compact kernel C. Thus there is an open subsemigroup T of $\phi^{-1}(C)$ such that $C \subseteq T$ and $1 \in T$ [5, 115]. Thus if $g \in T \cap H(1)$, then $1 \in K(g) = \bigcap_{n=1}^\ast \{g^i \mid i \geq n\}^\ast$. If $\Psi^{-1}(C)$ is a union of compact groups, then for all $g \in \Psi^{-1}(C) 1 \in K(g)$. Thus either $T \cap H(1) = \emptyset$ or $\Psi^{-1}(C)$ contains a one-parameter group isomorphic to R. Since $e \in (\Psi^{-1}(C))^\ast$, $T \cap H(1) \neq \emptyset$; thus $\Psi^{-1}(C)$ contains a one-parameter group P isomorphic to R. By Weil's lemma [6, 102], $(eP)^\ast$ is compact.

Corollary. Let S be a locally compact Hausdorff semigroup which contains a dense group $H(1) \subseteq C$. If $H(1)$ is a union of compact subgroups, then either $E(S) = \{1\}$ or for all $e \in E(S) \setminus \{1\}$, $H(e)$ is not a topological group.

Theorem 3. Let S be a D-semigroup with $H(1) \subseteq C$ and $S \setminus H(1) = H(e)$. Then there is a vector subgroup $V \subseteq H(1)$ and a subsemigroup T of S
such that:

(i) The function \(m: V \times T \rightarrow S \) defined by \(m(v, t) = vt \) is an isomorphism of topological semigroups.

(ii) \(T \) is a D-semigroup with \(H_T(e) = T \setminus H_T(1) \).

(iii) \(H_T(1) = H_S(1) \cap T \cong R \times K \) where \(K \) is a union of compact open subgroups of \(K \), and \(H_T(e) = H_S(e) \cap T \) is a union of compact open subgroups of \(H_T(e) \).

If in addition, \(H_S(1)/H_S(1)_e \) is compact, then \(T \) is one of the semigroups described by Hofmann in [3].

Proof. Let \(T = \phi^{-1}(\ker \pi) \). Then \(T \cap H(e) = H_T(e) = \ker \pi \) is a union of compact open subgroups of \(H_T(e) \). Let \(r \) be the corestriction of \(\iota \phi \) to its image. Then \(r \mid V = 1 \). The morphism \(s \rightarrow (r(s), r(s)^{-1}) \): \(S \rightarrow V \times T \) is the inverse of \(m \) in (i). Part (ii) follows from Theorem 2. Finally, let \(C \) be a compact open subgroup of \(T \cap H(e) \). Then \(\phi^{-1}(C) \) is open in \(T \) and is a D-semigroup, but in addition \(\phi^{-1}(C) \cap H(e) \) is compact. Thus by Hofmann's results [3], \(\phi^{-1}(C) \cong R \times K \) with \(K \) a compact group. Since \(\phi^{-1}(C) \cap H(1) \) is open in \(T \cap H(1) \), from (I) it follows that \(T \cap H(1) \cong R \times K_1 \) where \(K_1 \) is a union of compact subgroups. Since \(H_T(e) = \ker \pi \), we have (iii).

Now assume \(H(1)/H(1)_e \) is compact. Then \(H_T(1)/H_T(1)_e \) is compact, hence, by Lemma 4 and (iii), \(H(e) \cap T = H_T(e) \) is compact.

Theorem 4. Let \(S \) be a D-semigroup with property that \(H(1) \) is a topological group which contains a compact normal subgroup \(C \) and \(H(1)/C \subset C \). Then there is a D-semigroup \(S/C \) and an open homomorphism \(h \) from \(S \) onto \(S/C \) such that:

(i) \(h(H(1)) = H(h(1)) \cong H(1)/C \).

(ii) \(S/C = [H(h(1))]^* \).

(iii) \(h[H(e)] = H(h(e)), h^{-1}[h(H(e))] = H(e), \) and \(H(h(e)) \cong H(e)/eC \).

The proof of this theorem presents no difficulties and is left to the reader.

Corollary 1. Let \(S \) be a locally compact Hausdorff semigroup satisfying the following hypotheses:

(a) \(E(S) \) contains at least two elements \(1 \) and \(e \).

(b) \(H(1) \) is a topological group such that \(H(1)^* = S \).

(c) \(H(1) \) contains a compact normal subgroup \(C \) such that \(H(1)/C \cong R \).

Then the boundary of \(H(1) \) is a compact group if and only if \(eH(1) \) is a topological group.

Proof. If the boundary of \(H(1) \) is compact, then by the results of Hofmann [3] \(S \setminus H(1) \) is a compact group.

If \(eH(1) \) is a topological group, then \(H(e) \) is a topological group.
By Theorem 4 \(S/C \) is a \(D \)-semigroup with \(h(H(1)) \cong R \). By Theorem 2 \(H(h(e)) \) is compact; thus by a result of J. G. Horne [6], \(S/C = H(h(1)) \cup H(h(e)) \). Thus \(S = H(1) \cup H(e) \) by Theorem 3. Since \(H(e)/eC \) is compact and \(C \) is compact, \(H(e) \) is compact.

Corollary 2. Let \(S \) be as in Theorem 4 with the additional property that \(H(h(1))/H(h(1)) \) is compact. Then \(H(e) \cup H(1) \) is a \(D \)-semigroup if and only if \(h(h(e)) \cong \mathbb{R}^{n-1} \times C \) where \(C \) is compact and \(H(h(1)) \cong \mathbb{R}^n \times K \) with \(K \) compact.

Proof. Let \(S/C \) be the semigroup described in Theorem 3. Then \(H(e) \cup H(1) \) is a \(D \)-semigroup if and only if \(H(h(e)) \cup H(h(1)) \) is a \(D \)-semigroup. If \(H(h(e)) \cup H(h(1)) \) is a \(D \)-semigroup, then \(h(H(e) \cup H(1)) \) satisfies the conditions of Theorem 2. The only if part now follows from Theorem 2.

Assume \(H(e) \cong \mathbb{R}^{n-1} \times C \). By (1) there is a splitting surjection \(\pi \) from \(H(h(e)) \) onto a vector group such that \(\ker \pi \) is compact. Then \(\phi^{-1}(\ker \pi) \) is a \(D \)-semigroup with a compact ideal \(\ker \pi \) and \(\phi^{-1}(\ker \pi) \cap H(h(1)) \cong \mathbb{R} \times K \) where \(K \) is compact. Thus by Corollary 1 \(\phi^{-1}(\ker \pi) = \ker \pi \cup (\phi^{-1}(\ker \pi) \cap H(h(1))) \), and \(\phi^{-1}(\ker \pi) \) is a closed subspace of \(S/C \). By Lemma 3 the morphism \(\pi \Psi: H(h(1)) \to W \) has a right inverse \(i: W \to H(h(1)) \). Let \(V = i(W) \) and \(r: H(e) \cup H(1) \to V \) be the corestriction of \(i \pi \phi \) to its image. Let \(m: V \times \phi^{-1}(\ker \pi) \to h(H(1) \cup H(e)) \) be the map defined by \(m(v, t) = vt \). Then

\[
s \mapsto (r(s), r(s)s^{-1}): h(H(1) \cup H(e)) \to V \times \phi^{-1}(\ker \pi)
\]

is the inverse of \(m \). Thus \(h(H(1) \cup H(e)) \) is a \(D \)-semigroup.

References

University of Kentucky and
Georgetown College