ABOUT THE UNIVERSAL COVERING OF THE COMPLEMENT OF A COMPLETE QUADRILATERAL

WILHELM STOLL

In 1960, Professor Chern asked me if the universal covering of the complement of a complete quadrilateral \(Q \) in the two-dimensional complex projective space \(\mathbb{P}^2 \) were biholomorphic equivalent to a bounded domain in \(\mathbb{C}^2 \). The answer is negative. A recent discussion in Berkeley disclosed that this fact still seems to be unknown. Therefore, the simple proof shall be finally published. At first, a more general theorem shall be proved:

Theorem 1. Let \(M \) be a complex space. Let \(\pi: \tilde{M} \to M \) be an unrestricted covering space of \(M \). Let \(g: \tilde{M} \to \mathbb{C}^n \) be a holomorphic map of fiber dimension zero. Suppose that a nonconstant holomorphic map \(f: \mathbb{C} \to \{0\} \to M \) exists. Then, the image \(g(M) \) of \(g \) is unbounded.

Remarks to the terminology. \(\pi: \tilde{M} \to M \) is called a covering if \(\pi \) is surjective and locally biholomorphic. The covering is called unrestricted (or regular by Ahlfors and Sario) if, for every \(a \in M \), every \(b \in \pi^{-1}(a) \) and every continuous map \(\gamma: I \to M \) of the unit interval \(I \) into \(M \) with \(\gamma(0) = a \), a continuous map \(\tilde{\gamma}: I \to \tilde{M} \) with \(\tilde{\gamma}(0) = b \) and \(\pi \circ \tilde{\gamma} = \gamma \) exists, i.e. if the curves of \(M \) lift into \(\tilde{M} \). The holomorphic map \(g \) is said to be of fiber dimension zero if the inverse images \(g^{-1}(y) \) consist of isolated points only, or are empty.

Proof of Theorem 1. Let \(\epsilon: \mathbb{C} \to \mathbb{C} \to \{0\} \) be the exponential map \(\epsilon(z) = e^z \). Because \(\mathbb{C} \) is simply connected, a holomorphic map \(h: \mathbb{C} \to \tilde{M} \) exists such that \(\pi \circ h = f \circ \epsilon \). Suppose that \(g(\tilde{M}) \) is bounded. Then \(g \circ h \) is a bounded holomorphic vector function on \(\mathbb{C} \). By Liouville's theorem, \(g \circ h \) is constant. Hence, a point \(c \in \mathbb{C}^n \) exists such that the connected set \(h(\mathbb{C}) \) is contained in \(g^{-1}(c) \), whose components are points. Therefore, \(h \) is constant. Hence \(f \circ \epsilon = \pi \circ h \) is also constant. Because \(\epsilon \) is surjective, \(f \) is constant. Contradiction: Q.E.D.

Theorem 2. Let \(Q \) be the union of 4 projective lines in general position in the two-dimensional complex projective space \(\mathbb{P}^2 \). Then the universal
covering \(\pi: \hat{M} \to M \) of \(M = \mathbb{P}^2 - Q \) is not biholomorphically equivalent to an open bounded subset of \(\mathbb{C}^2 \).

Proof. Suppose a biholomorphic map \(g: \hat{M} \to H \) onto an open bounded subset \(H \) of \(\mathbb{C}^2 \) exists. Let \(L \) be a diagonal of \(Q \). In an appropriate coordinate system, \(M \) and \(M \cap L \) are given by

\[
M = \{(z, w) \in \mathbb{C}^2 \mid zw(z + w - 1) \neq 0\},
\]

\[
f: C - \{0\} \to L \cap M \text{ biholomorphically by } f(z) = (z, -z).
\]

Hence, \(f: C - \{0\} \to M \) is not constant. Theorem 1 implies that \(g(\hat{M}) = H \) is not bounded. Contradiction: Q.E.D.

Of course, the proof shows that any unrestricted covering of \(\mathbb{P}^2 - Q \) cannot be spread as a ramified covering space over a bounded subset of any \(\mathbb{C}^n \). However, Chern's original conjecture becomes true if a diagonal is removed:

Proposition 3. The dicylinder is the universal covering of \(A = \mathbb{P}^2 - (Q \cup L) \), where \(L \) is a diagonal of the quadrilateral \(Q \).

Proof. Observe that \(E = \{z \in \mathbb{C} \mid z \neq 0, 1\} \) has the unit disk \(D = \{z \mid |z| < 1\} \) as universal covering. For an appropriate coordinate system is

\[
A = \{(z, w) \in \mathbb{C}^2 \mid zw(w + z - 1)(w + z) \neq 0\}.
\]

A biholomorphic map \(f: A \to E \times E \) is defined by

\[
f(z, w) = (1/(z + w), z/(z + w)).
\]

Therefore, \(D \times D \) is the universal covering of \(A \). Q.E.D.

The question of whether an open subset of \(\mathbb{C}^2 \) is a universal covering of \(\mathbb{P}^2 - Q \) remains unsettled. (See Problem 25, p. 308, *Proceedings of the conference on complex analysis* (Minneapolis 1964), Springer-Verlag, Berlin, 1965.)

University of Notre Dame