Tangled embeddings of one-dimensional continua
HTML articles powered by AMS MathViewer
- by D. R. McMillan and Harry Row
- Proc. Amer. Math. Soc. 22 (1969), 378-385
- DOI: https://doi.org/10.1090/S0002-9939-1969-0246267-7
- PDF | Request permission
References
- R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. (2) 68 (1958), 1β16. MR 96181, DOI 10.2307/1970040
- Steve Armentrout, Decompostions of $E^{3}$ with a compact $\textrm {O}$-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165β177. MR 195074, DOI 10.1090/S0002-9947-1966-0195074-4
- John Hempel, A surface in $S^{3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273β287. MR 160195, DOI 10.1090/S0002-9947-1964-0160195-7
- Solomon Lefschetz, On compact spaces, Ann. of Math. (2) 32 (1931), no.Β 3, 521β538. MR 1503014, DOI 10.2307/1968249
- D. R. McMillan Jr., A criterion for cellularity in a manifold. II, Trans. Amer. Math. Soc. 126 (1967), 217β224. MR 208583, DOI 10.1090/S0002-9947-1967-0208583-7 Stephen Slack, Cellularity in certain 3-manifolds, Ph.D. Thesis, University of Wisconsin, Madison, 1968.
- J. H. C. Whitehead, On $2$-spheres in $3$-manifolds, Bull. Amer. Math. Soc. 64 (1958), 161β166. MR 103473, DOI 10.1090/S0002-9904-1958-10193-7
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 378-385
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9939-1969-0246267-7
- MathSciNet review: 0246267