A nonoscillation theorem for a nonlinear second order differential equation
HTML articles powered by AMS MathViewer
- by J. W. Heidel
- Proc. Amer. Math. Soc. 22 (1969), 485-488
- DOI: https://doi.org/10.1090/S0002-9939-1969-0248396-0
- PDF | Request permission
References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316
- Štefan Belohorec, On some properties of the equation $y^{\prime \prime }(x)+f(x)y^{\alpha }(x)=0$, $0<\alpha <1$, Mat. Časopis Sloven. Akad. Vied 17 (1967), 10–19 (English, with Russian summary). MR 214854
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- I. T. Kiguradze, On the conditions for oscillation of solutions of the differential equation $u^{\prime \prime }+a(t)|u|\ sp{n}\,\textrm {sgn}\, u=0$, Časopis Pěst. Mat. 87 (1962), 492–495 (Russian, with Czech and German summaries). MR 0181800 Imrich Ličko and Marko Švec, Le charactère oscillatoire des solutions de l’équation ${y^{(n)}} + f(x){y^\alpha } = 0,n > 1$, Czechoslovak Math. J. 88 (1963), 481-491.
- Richard A. Moore and Zeev Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30–52. MR 111897, DOI 10.1090/S0002-9947-1959-0111897-8
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 485-488
- MSC: Primary 34.42
- DOI: https://doi.org/10.1090/S0002-9939-1969-0248396-0
- MathSciNet review: 0248396