An identity for the Schur complement of a matrix
HTML articles powered by AMS MathViewer
- by Douglas E. Crabtree and Emilie V. Haynsworth
- Proc. Amer. Math. Soc. 22 (1969), 364-366
- DOI: https://doi.org/10.1090/S0002-9939-1969-0255573-1
- PDF | Request permission
References
- Douglas E. Crabtree, Applications of $M$-matrices to non-negative matrices, Duke Math. J. 33 (1966), 197–208. MR 186677
- Douglas E. Crabtree, Characteristic roots of $M$-matrices, Proc. Amer. Math. Soc. 17 (1966), 1435–1439. MR 199203, DOI 10.1090/S0002-9939-1966-0199203-3
- D. E. Crabtree, A matrix identity, Amer. Math. Monthly 75 (1968), 648–649. MR 229663, DOI 10.2307/2313794
- F. R. Gantmacher, The theory of matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Translated from the Russian by K. A. Hirsch; Reprint of the 1959 translation. MR 1657129
- Emilie V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), no. 1, 73–81. MR 223392, DOI 10.1016/0024-3795(68)90050-5
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 364-366
- MSC: Primary 15.20
- DOI: https://doi.org/10.1090/S0002-9939-1969-0255573-1
- MathSciNet review: 0255573