On transitive and fully transitive primary groups
HTML articles powered by AMS MathViewer
- by Paul Hill
- Proc. Amer. Math. Soc. 22 (1969), 414-417
- DOI: https://doi.org/10.1090/S0002-9939-1969-0269735-0
- PDF | Request permission
References
- Phillip Griffith, Transitive and fully transitive primary abelian groups, Pacific J. Math. 25 (1968), 249–254. MR 230816
- Paul Hill, The isomorphic refinement theorem for direct sums of closed groups, Proc. Amer. Math. Soc. 18 (1967), 913–919. MR 215919, DOI 10.1090/S0002-9939-1967-0215919-5 —, On the classification of abelian groups (to appear).
- P. D. Hill and C. K. Megibben, Quasi-closed primary groups, Acta Math. Acad. Sci. Hungar. 16 (1965), 271–274 (English, with Russian summary). MR 191957, DOI 10.1007/BF01904835
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- Charles K. Megibben, On high subgroups, Pacific J. Math. 14 (1964), 1353–1358. MR 180600
- Charles Megibben, Large subgroups and small homomorphisms, Michigan Math. J. 13 (1966), 153–160. MR 195939
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 414-417
- MSC: Primary 20.30
- DOI: https://doi.org/10.1090/S0002-9939-1969-0269735-0
- MathSciNet review: 0269735