ISOMETRIES OF THE TRACE CLASS
BERNARD RUSSO

Let \mathcal{S} denote the Banach space of trace class operators on a complex Hilbert space H, in the norm $\|T\|_1 = \text{Tr}(|T|)$. The space \mathcal{S} is a two-sided ideal in the algebra \mathcal{L} of all bounded operators on H. See [4].

Theorem. If Φ is a linear isometry of the Banach space \mathcal{S} onto itself, then there exists a $*$-automorphism or a $*$-antiautomorphism α of \mathcal{L} and a unitary operator U in \mathcal{L} such that $\Phi(T) = \alpha(TU)$, (T in \mathcal{S}).

Remark 1. The theorem provides a partial answer to [3, Remark 1, p. 231].

Proof. The adjoint Φ' is a linear isometry of \mathcal{L} onto \mathcal{L} so by results of Kadison [2, Theorem 7, Corollary 11] has the form $\Phi'(A) = U\alpha(A)$ where α and U are as described in the statement of the theorem. It is elementary that $\Phi(T) = \Psi(TU)$ where $\Psi = \alpha$. The proof will be complete if it is shown that α is the adjoint of α^{-1} (restricted to \mathcal{S}). By the folk result [1, pp. 256, 9] it is sufficient to check this in the following two cases:

(i) $\alpha(A) = VA^{-1} V$ with V a fixed unitary operator; then $\langle T, \alpha(A) \rangle = \langle T, VA^{-1} V \rangle = \langle A^{-1} TV, A \rangle = \langle \alpha^{-1}(T), A \rangle$,

(ii) after the choice of an orthonormal basis, $\alpha(A)$ is the transposed matrix of A; then $\langle T, \alpha(A) \rangle = \text{Tr}(T\alpha(A)) = \text{Tr}(\alpha(T)A) = \langle \alpha^{-1}(T), A \rangle$.

Remark 2. A previous version of the above proof exploited a knowledge of the extreme points of the unit sphere of \mathcal{S}. These were determined to be the partial isometries with initial (hence final) domain one-dimensional.

References

University of California, Irvine

Received by the editors March 7, 1969.

1 This research was supported by the National Science Foundation Grant GP-8291.