A GRONWALL INEQUALITY FOR LINEAR
STIELTJES INTEGRALS

J. V. HEROD

This paper provides a Gronwall type inequality which includes the one found by Schmaedeke and Sell \[4\].

Suppose that \(S \) is an interval of real numbers containing zero and \(OB \) is the collection of functions from \(S \) to the real numbers each member of which is of bounded variation on each finite interval of \(S \). The numeral 1 will also denote the constant function from \(S \) which has only the value 1; if \(x \) is in \(S \), then \(1_x \) denotes the function from \(S \) which has the value 1 at \(x \) and the value 0 elsewhere; and \(0_x \) denotes the function \(1 - 1_x \). Let \(J \) be a function from \(OB \) to the collection of functions from \(S \times S \) to the real numbers having the following properties: if each of \(f \) and \(g \) is in \(OB \) and \(\{x, y, z\} \) is in \(S \times S \times S \) then

\[
\begin{align*}
(1) \quad J[f](x, y) + J[g](x, y) &= J[f + g](x, y), \\
(2) \quad J[r \cdot f](x, y) &= r \cdot J[f](x, y), \\
(3) \quad J[f](x, y) + l[f](y, z) &= J[f](x, z) \quad \text{provided that } x \leq y \leq z \text{ or } x \geq y \geq z, \\
(4) \quad J[f](x, z) \geq 0 \quad \text{provided that } f(y) \geq 0 \text{ for } x \leq y \leq z \text{ or } x \geq y \geq z, \\
\end{align*}
\]

and

\[
\begin{align*}
(5) \quad \text{if } x \text{ is in } S \text{ and } x \geq 0 \text{ then each of } J[0_x](x, x^+) \text{ and } J[1_x](x^-, x) \text{ is less than 1; whereas, if } x \text{ is in } S \text{ and } x \leq 0 \text{ then each of } J[1_x](x^+, x) \text{ and } J[0_x](x, x^-) \text{ is less than 1.}
\end{align*}
\]

Theorem. If \(J \) satisfies properties (1)–(5), there is a function \(m \) from \(S \times S \) to the real numbers having the following properties:

\[
\begin{align*}
(i) \quad m(x, y) &\geq 1 \text{ for each } \{x, y\} \text{ in } S \times S, \\
(ii) \quad m(x, y) \cdot m(y, z) &= m(x, z) \quad \text{provided that } x \leq y \leq z \text{ or } x \geq y \geq z, \\
(iii) \quad m(0, x) = 1 + J[m(0, \cdot)](0, x) \text{ for each } x \text{ in } S, \text{ and} \\
(iv) \quad \text{if } f \text{ is in } OB, P \text{ is a number, and } f(x) \leq P + J[f](0, x) \text{ for each } x \text{ in } S, \text{ then } f(x) \leq P \cdot m(0, x) \text{ for each } x \text{ in } S.
\end{align*}
\]

Remark. It is the purpose of this remark to show a connection between the above theorem and one of Schmaedeke and Sell. In \[4\], they investigate an inequality similar to that in part (iv) but use the mean Stieltjes integral and the Dushnik or interior integral (see also \[3\]). One-term approximating sums for these are indicated:

Received by the editors January 20, 1969.
A GRONWALL INEQUALITY FOR STIELTJES INTEGRALS

\[
(M) \int_x^y f dg \sim \frac{f(x) + f(y)}{2} \cdot [g(y) - g(x)]
\]

and

\[
(I) \int_x^y f dg \sim f(z) \cdot [g(y) - g(x)] \text{ where } x < z < y \text{ or } x > z > y.
\]

If no member of \(S \) is negative, \(g \) is increasing and right continuous, and, for \(x \leq y \), \(J[f](x, y) \) is defined to be \((M) \int_x^y f dg\), with \(J[f](y, x) = J[f](x, y) \), then \(J \) satisfies properties (1)-(4) and, also, property (5) in case \(g(z) - g(z^-) < 2 \) for all \(z \) different from zero. If \(P \) is a number, \(f \) is in \(OB \), and \(f(x) \leq P + (M) \int_x^y f dg \) for each \(x \) in \(S \), then \(f(x) \leq P + J[f](0, x) \) for each \(x \) in \(S \), since no member of \(S \) is negative. This inequality includes the inequality of [4, p. 1219]. If, instead, \(J \) is defined in terms of the interior integral then properties (1)-(4) are, again, satisfied by \(J \) and property (5) makes no additional requirement due to the condition that \(g \) is right continuous. (See Remark 1 of [4].)

Remark. With properties (1)-(3), a more familiar property which is equivalent to the conceptually simpler property (4) is

\[(4') \text{ if } f \text{ is in } OB \text{ and } \{x, z\} \text{ is in } S \times S \text{ and } m \text{ is a number such that } |f(y)| \leq m \text{ for all } y \text{ in } S \text{ such that } x \leq y \leq z \text{ or } x \geq y \geq z, \text{ then } |J[f](x, z)| \leq mJ[1](x, z) \text{ (compare [2, Axiom II]).}
\]

To see that (4) implies \((4')\), notice that each of \(m + f(y) \) and \(m - f(y) \) is nonnegative for \(x \leq y \leq z \) or \(x \geq y \geq z \); to see that \((4')\) implies (4), notice that each of \(J[1_x] \) and \(J[0_x] \) has only nonnegative values and use the formulas in Theorem 1 and equation (24) of [2]. We shall use the fact that if \(f \) is in \(OB \) and \(\{x, y\} \) is in \(S \times S \) then \(J[f](x, y) \leq J[|f|](x, y) \) (which follows from properties (1)-(4).

Indication of Proof of Theorem. The proof of parts (i), (ii), and (iii) of the theorem is only a slight modification of the ideas developed by MacNerney in [2, Theorems 1 and 2] and used by the author in [1, Theorem 1.1]. For part (iv), suppose that \(f \) is in \(OB \), \(P \) is a number, and \(f(x) \leq P + J[f](0, x) \) for each \(x \) in \(S \). Define a sequence \(h \) with values in \(OB \) as follows: \(h_0 = f \) and, if \(n \) is a positive integer, then \(h_n(x) = P + J[h_{n-1}](0, x) \) for each \(x \) in \(S \). Let \(r \) be a function so that if \(x \) is in \(S \) then \(r(x) = \int_0^x d[h_2 - h_1] \). Let \(L \) be a sequence so that if \(x \) is in \(S \) then \(L_1(x) = r(x) \) and if \(n \) is a positive integer then \(L_{n+1}(x) = J[L_n](0, x) \). If \(n \) is a positive integer and \(a \) is in \(S \), then

\[
0 \leq \sum_{p=1}^n L_p(a) \leq \sum_{p=1}^{n+1} L_p(a) \leq r(a) \cdot m(0, a).
\]
Moreover, if \(x \) is in \(S \) and between 0 and \(a \) and \(n \) is a positive integer then \(L_n(x) \leq L_n(a) \). Finally, if \(n \) is a positive integer and \(x \) is in \(S \) then
\[
|h_{n+1}(x) - h_n(x)| \leq L_n(x).
\]
Thus the sequence \(h \) converges absolutely and, if \(a \) is in \(S \), uniformly on the set of all numbers in \(S \) between 0 and \(a \). Moreover, if \(\lim h = U \) and \(a \) is in \(S \), then \(U(a) = P + \int [U](0, a) \); and \(U(x) = pm(0, x) \) for each \(x \) in \(S \). (To see this latter, recall [2, Theorems 2 and E].) We have, inductively, that if \(p \) is a positive integer and \(x \) is in \(S \) then \(f(x) \leq h_p(x) \). Consequently, \(f(x) \leq pm(0, x) \).

Remark. Using [1, Lemma 1.1] and similar techniques to the ones indicated above, we may obtain a more general inequality for a function \(f \) which satisfies \(f(x) \leq P + \int [f](0, x) + g(x) \) where \(g \) is in \(OB \) and \(g(0) = 0 \).

Bibliography

Georgia Institute of Technology