A note on the representation of a solution of an elliptic differential equation near an isolated singularity
HTML articles powered by AMS MathViewer
- by David G. Schaeffer
- Proc. Amer. Math. Soc. 23 (1969), 450-454
- DOI: https://doi.org/10.1090/S0002-9939-1969-0245956-8
- PDF | Request permission
References
- A. Grothendieck, Sur les espaces de solutions d’une classe générale d’équations aux dérivées partielles, J. Analyse Math. 2 (1953), 243–280 (French). MR 65811, DOI 10.1007/BF02825639
- Fritz John, The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure Appl. Math. 3 (1950), 273–304. MR 42030, DOI 10.1002/cpa.3160030305
- J. L. Lions and E. Magenes, Problèmes aux limites non homogènes. VII, Ann. Mat. Pura Appl. (4) 63 (1963), 201–224 (German). MR 170228, DOI 10.1007/BF02412183
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990 A. Martineau, Les hyperfonctions de M. Sato, Séminaire Bourbaki 13, Exposé 214 (1960/1961).
- Martin Schechter, General boundary value problems for elliptic partial differential equations, Comm. Pure Appl. Math. 12 (1959), 457–486. MR 125323, DOI 10.1002/cpa.3160120305
- R. T. Seeley, Refinement of the functional calculus of Calderón and Zygmund, Indag. Math. 27 (1965), 521–531. Nederl. Akad. Wetensch. Proc. Ser. A 68. MR 0226450
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 23 (1969), 450-454
- MSC: Primary 35.05
- DOI: https://doi.org/10.1090/S0002-9939-1969-0245956-8
- MathSciNet review: 0245956