A characterization of totally regular $[J, f(x)]$ transforms
HTML articles powered by AMS MathViewer
- by Dany Leviatan and Lee Lorch
- Proc. Amer. Math. Soc. 23 (1969), 315-319
- DOI: https://doi.org/10.1090/S0002-9939-1969-0246014-9
- PDF | Request permission
References
- S. K. Basu, On the total relative strength of the Hölder and Cesàro methods, Proc. London Math. Soc. (2) 50 (1949), 447–462. MR 27870, DOI 10.1112/plms/s2-50.6.447
- D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318–322. MR 86158, DOI 10.1017/S0305004100032357
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- Henry Hurwitz Jr., Total regularity of general transformations, Bull. Amer. Math. Soc. 46 (1940), 833–837. MR 2646, DOI 10.1090/S0002-9904-1940-07310-0 W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences, Proc. London Math. Soc. (2) 26 (1927), 231-268.
- Amnon Jakimovski, The sequence-to-function analogues to Hausdorff transformations, Bull. Res. Council Israel Sect. F 8F (1960), 135–154 (1960). MR 126095
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 23 (1969), 315-319
- MSC: Primary 40.30
- DOI: https://doi.org/10.1090/S0002-9939-1969-0246014-9
- MathSciNet review: 0246014