ON SOME SUBSPACES OF BANACH SPACES
WHOSE DUALS ARE L_1 SPACES

M. ZIPPIN

1. Introduction. Banach spaces whose duals are L_1 spaces were extensively studied in [3]. Recently J. Lindenstrauss and D. Wulbert [4] proved some results on the classification of these spaces which complemented the results of [3]. In [2] the results of [5] were applied to prove the following structure theorem for the separable case:

Proposition 1 [2, Theorem 2]. A separable Banach space X satisfies $X^* = L_1$ space if and only if X has a monotone basis $\{x_i\}_{i=1}^\infty$ such that for every n the span of $\{x_i\}_{i=1}^n$ is isometric to l_1^n (= the space of n-tuples $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ of reals with $\|\lambda\| = \max_{1 \leq i \leq n} |\lambda_i|$).

We recall that a sequence $\{x_i\}_{i=1}^\infty$ in a Banach space X is called a monotone basis of X (see [1, p. 67]) if each $x \in X$ has a unique representation $x = \sum_{i=1}^\infty \alpha_i x_i$ where $\{\alpha_i\}$ are scalars and the projections P_n on X defined by $P_n(\sum_{i=1}^\infty \alpha_i x_i) = \sum_{i=1}^n \alpha_i x_i$ are of norm 1.

The purpose of this note is to show that the space c_0 (= the space of real sequences $\rho = \{\rho_n\}_{n=1}^\infty$ which converge to 0 with $\|\rho\| = \sup_{1 \leq n} |\rho_n|$) is the minimal infinite dimensional Banach space whose dual is an L_1 space, namely

Theorem 1. Let X be a separable infinite dimensional Banach space whose dual is an L_1 space. Then X has a subspace V isometric to c_0 such that there is a projection of norm 1 from X onto V.

It is proved in [3, p. 67, Corollary 2] that any infinite dimensional Banach space Y with $Y^* = L_1(\mu)$ has a separable infinite dimensional subspace X for which $X^* = L_1(\nu)$. Hence, Theorem 1 implies the following

Corollary 1. Every infinite dimensional Banach space whose dual is an L_1 space contains a subspace isometric to c_0.

2. Preliminary lemmas. Let X be a separable Banach space such that X^* is an L_1 space and assume that $\{x_i\}_{i=1}^\infty$ is the monotone basis of X mentioned in Proposition 1. It follows from Proposition 1 that in each subspace $E_n = \text{span } \{x_i\}_{i=1}^n$ there is a basis $\{e_i^n\}_{i=1}^n$ such that

$$\| \sum_{i=1}^n \gamma_i e_i^n \| = \max_{1 \leq i \leq n} |\gamma_i|$$

Received by the editors March 19, 1969.
for any real $\gamma_1, \gamma_2, \cdots, \gamma_n$. It is easy to prove (see [4, §5] and [5]) that the bases $\{e^n_i\}_{i=1}^n$, $n = 1, 2, 3, \cdots$ can be chosen such that for every n and $1 \leq i \leq n$

\begin{equation}
\sum_{i=1}^{n} a^n_i e^n_i = e^{n+1}_i + a^n_i e^{n+1}_i
\end{equation}

where $\sum_{i=1}^{n} |a^n_i| \leq 1$. We define now a sequence $\{\phi_i\}_{i=1}^\infty$ of functionals on $\bigcup_{n=1}^\infty E_n$ in the following way: For each $j < n$ and $x = \sum_{i=1}^{n} b_i e^n_i$, $\phi_j(x) = b_j$. Using (2) it is easy to show that ϕ_j is uniquely defined and linear. Moreover, $|\phi_j(x)| = |b_j| \leq \max_{1 \leq i \leq n} |b_i| = \|x\|$ and hence, ϕ_j can be extended by continuity to a linear functional of norm 1 on X. Another property of ϕ_j is proved in the following

Lemma 1. For each j ϕ_j is an extreme point of the unit ball of X^*.

Proof. Assume that $\phi_j = 1/(f + g)$ where $f, g \in X^*$ and $\|f\| = \|g\| = 1$. For all $n \geq j$, $f(e^n_j) = g(e^n_j)$ and if, for some $k \neq j$, $f(e^n_k) = \alpha \neq 0$ then

$f(e^n_j + (\text{sign } \alpha)e^n_k) = 1 + |\alpha| > 1$.

This contradicts the fact that $\|f\| = 1$ (since $\|e^n_j + (\text{sign } \alpha)e^n_k\| = 1$). It follows that $f(e^n_k) = 0$ for every $n \geq j$ and $k \neq j$. Obviously g shares the same property and therefore $f(x) = g(x) = \phi_j(x)$ for any $x \in \bigcup_{n=1}^\infty E_n$. Since $\bigcup_{n=1}^\infty E_n$ is dense in X Lemma 1 is thus proved.

Corollary 2. The closed linear span of $\{\phi_j\}_{j=1}^\infty$ is isometric to l_1.

Proof. X^* is an $L_1(\mu)$ space and, as is well known, the extreme points of the unit ball are elements of the form $\phi = \chi_A/\mu(A)$ where A is an atom and χ_A the characteristic function of A. It follows from Lemma 1 that $\|\sum_{i=1}^\infty \alpha_i \phi_i\| = \sum_{i=1}^\infty |\alpha_i|$ for any sequence $\{\alpha_i\}_{i=1}^\infty$ of reals. This concludes the proof.

For every $x = \sum_{j=1}^{n} b_j e^n_j \in \bigcup_{k=1}^\infty E_k$ we have $\|x\| = \max_{1 \leq j \leq n} |b_j| = \max_{1 \leq j \leq n} |\phi_j(x)| \leq \sup_{1 \leq j < \infty} |\phi_j(x)| \leq \|x\|$. It follows that for every $x \in X$

\begin{equation}
\|x\| = \sup_{1 \leq j < \infty} |\phi_j(x)|.
\end{equation}

The functionals ϕ_j will play an important role in the sequel.

Lemma 2. Let $n(k)$ and $i(k)$ be increasing sequences of positive integers with $i(k) \leq n(k)$. Then the sequence $\{e_{i(k)}^m\}_{k=1}^\infty$ forms a monotone basis in the subspace E which it spans in X. Moreover, in each subspace $F_m = \text{span} \{e_{i(k)}^m\}_{k=1}^m$ there is a basis $\{u_i^m\}_{i=1}^m$ satisfying the following

(a) $u_i^m = e_{i(m)}^m$.

(b) For every m and $1 \leq i \leq m$, $u_i^m = u_{i+1}^m + b_i u_{i+1}^m$ where $\sum_{i=1}^m |b_i| \leq 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(c) \[\| \sum_{i=1}^{n} \gamma_{i} u_{i}^{n} \| = \max_{1 \leq i \leq n} |\gamma_{i}| \text{ for any real } \gamma_{1}, \cdots, \gamma_{m}. \]

Proof. Define \(u_{1} = e_{i(1)}^{n} \) and for \(k > 1 \)

\[
\begin{align*}
 u_{k} &= e_{i(k)}^{n} & \text{if } h = k \\
 &= \sum_{j=1, j \neq i(k)}^{n(k)} b_{h,j} e_{j}^{n(k)} & \text{if } h < k \text{ and } u_{h} = \sum_{j=1}^{n(k)} b_{h,j} e_{j}^{n(k)}.
\end{align*}
\]

The properties (a) and (b) follow directly from the definition of \(u_{j}^{k} \) and from (c), while the following assertion is an easy consequence of (2): Let \(x = \sum_{i=1}^{s} a_{i} e_{i} = \sum_{i=1}^{s} b_{i} e_{i} \) where \(s > r \). Then \(a_{i} = b_{i} \) for all \(i \leq r \). (Proof by induction on \(s - r \).) In view of this fact and the definition of \(u_{j}^{k} \), we have the equality \(1 = b_{i,j}^{(k)} \) for \(1 \leq j < k \). Assertion (c) holds for \(m = 1 \) and, assuming its validity for \(m = k - 1 \), we get that \(\sum_{j=1}^{k-1} |b_{h,j}^{k}| \leq 1 \) for all \(1 \leq j \leq n(k) \). (This follows from the fact that \(\{ e_{j}^{n(k)} \}_{j=1}^{n(k)} \) is the usual basis in the \(\ell^{1}(m) \text{-space } E_{n(k)} \) and that \(\| \sum_{j=1}^{k-1} \pm u_{j}^{k-1} \| = 1 \) for any choice of the signs.) In particular it follows that \(b_{p,i(j)}^{k} = 0 \) for all \(p \neq j, 1 \leq p, j \leq k \). We thus get that

\[
\max_{1 \leq j \leq k-1} |\gamma_{j}| \leq \| \sum_{j=1}^{k} \gamma_{j} u_{j}^{k} \| \leq \| \sum_{j=1}^{k-1} \gamma_{j} u_{j}^{k-1} \| = \max_{1 \leq j \leq k-1} |\gamma_{j}|.
\]

for any real \(\gamma_{1}, \cdots, \gamma_{k-1} \). The definition of \(u_{j}^{k} \) and the last inequality yield

\[
\| \sum_{j=1}^{k} \gamma_{j} u_{j}^{k} \| = \max \left\{ \| \sum_{j=1}^{k-1} \gamma_{j} u_{j}^{k} \|, |\gamma_{k}| \right\} = \max_{1 \leq j \leq k} |\gamma_{j}|.
\]

This proves (c).

Now, for any sequence \(\{ \gamma_{j} \}_{j=1}^{k+1} \) of reals let \(\sum_{j=1}^{k} \gamma_{j} e_{i(j)}^{n(j)} = \sum_{j=1}^{k} \beta_{j} u_{j}^{k} \). Then by (a), (b) and (c)

\[
\| \sum_{j=1}^{k} \gamma_{j} e_{i(j)}^{n(j)} \| = \max_{1 \leq j \leq k} |\beta_{j}| \leq \max \left\{ \max_{1 \leq j \leq k} |\beta_{j}|, |\gamma_{k+1} + \sum_{j=1}^{k} \beta_{j} b_{j}^{k}| \right\}
\]

\[
= \left\| \sum_{j=1}^{k} \beta_{j} u_{j} + \gamma_{k+1} u_{k+1} \right\| = \left\| \sum_{j=1}^{k+1} \gamma_{j} u_{j} \right\| = \left\| \sum_{j=1}^{k+1} \gamma_{j} e_{i(j)}^{n(j)} \right\|.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
This inequality shows that \(\{ e_i^{(j)} \} \) is a monotone basis of \(E \) (see \([1, \text{p. 67}]\)), and Lemma 2 is proved.

By Proposition 1 and Lemma 2 any sequence \(\{ e_i^{(k)} \} \), where \(n(k) \) and \(i(k) \) are increasing and \(i(k) \leq n(k) \), span a subspace \(E \) whose dual is an \(L_1 \) space. As in the definition of the functionals \(\{ \phi_i \} \) given at the beginning of \(\S 2 \), we define functionals \(\{ \psi_j \} \) on \(E \) by \(\psi_j(\sum_{i=1}^{k} b_i u_i^k) = b_j \) if \(k \geq j \) and then extend them by continuity to \(E \). By (3) we have, for every \(x \in E, \| x \| = \sup_{1 \leq j < \infty} | \psi_j(x) | \). Since \(u_h^k = \sum_{j=1}^{n(k)} u_{h,j}^k e_j^{(k)} \) where \(b_{h,j}^k = \delta_{h,j} \) we get that \(\phi_i^{(j)}(u_h^k) = \delta_{h,j} = \psi_j(u_h^k) \) for \(1 \leq j, h \leq k \). Hence \(\psi_j(x) = \phi_i^{(j)}(x) \) for all \(x \in E \) and thus

\[
(5) \quad \| x \| = \sup_j \| \phi_i^{(j)}(x) \|.
\]

In the sequel we will need the following well known

Lemma 3. Let \(\{ w_k \} \) be a sequence of elements of \(c_0 \) where \(w_k = (\omega^k, \omega^2, \ldots) \) and assume that the following conditions are satisfied:

\[
(6) \quad \omega^k = 1 \quad \text{for every } k
\]

\[
(7) \quad \sum_{k=1; k \neq i}^{\infty} | \omega_i^k | \leq 1/2.
\]

Then \(c_0 = \text{span} \{ w_k \} \).

Proof. Let \(U \) be the operator defined by \(U(\sum_{k=1}^{\infty} \gamma_k e_k) = \sum_{k=1}^{\infty} \gamma_k w_k \) where \(\{ e_k \} \) denotes the usual unit vector basis in \(c_0 \). Since \(U \) is given by the matrix \([\omega_i^k] \), we get by (6) and (7) that \(\| I - U \| \leq 1/2 \), where \(I \) is the identity on \(c_0 \). It follows that \(U \) is invertible and hence \(c_0 = \text{span} \{ w_k \} \).

3. **Proof of Theorem 1.** Let \(X \) be a separable Banach space whose dual is an \(L_1 \) space. By Proposition 1 there is a system \(\{ e_i \}_{i=1}^{\infty} \) constructed there; by the \(\omega^* \) sequential compactness of the unit ball in \(X^* \) there is a subsequence \(\{ \phi_n^{(j)} \} \) of \(\{ \phi_n \} \) which converges \(\omega^* \) to a functional \(\phi \). By Lemma 2, the subspace \(E = \text{span} \{ e_i^{(j)} \} \) has an \(L_1 \) space as a dual and if \(\psi_j \) and \(\psi \) denote the restrictions of \(\phi_n^{(j)} \) and \(\phi \) to \(E \) respectively, the following conditions are satisfied:

\[
(8) \quad \| x \| = \sup_{1 \leq j} | \psi_j(x) |,
\]

\[
(9) \quad \lim_{j \to \infty} \psi_j(x) = \psi(x),
\]
for every $x \in E$. Construct now in E the bases $\{ u_j^k \}_{j=1}^k, k = 1, 2, \ldots$ satisfying (a), (b) and (c) of Lemma 2. It follows from (c) that for any choice of the signs $\| \sum_{i=1}^k \pm u_i^k \| = 1$ and therefore, for any k we have

$$\sum_{i=1}^k | \psi(u_i^k) | \leq 1.$$

Put $p(1) = 16$ and choose $q(1), 1 \leq q(1) \leq 16$, such that $| \psi(u_q^{p(1)}) | \leq 16^{-1}$. Denote $\mu_1 = \psi(u_q^{p(1)})$ and choose

$$p(2) \geq 4 \cdot 8^3 \quad \text{if } \mu_1 = 0$$
$$\geq 32^{-1} \mu_1^{-1} \quad \text{if } \mu_1 \neq 0$$

so large that

$$| \psi_h(u_q^{p(1)}) - \mu_1 | \leq 16^{-1} \quad \text{if } \mu_1 = 0$$
$$\leq 2^{-1} \mu_1 \quad \text{if } \mu_1 \neq 0$$

for all $h \geq 2^{-1} p(2)$. By (10) we can choose $q(2), 2^{-1} p(2) \leq q(2) \leq p(2)$, such that

$$| \psi(u_q^{p(2)}) | \leq 2^{-1} \cdot 8^{-2} \quad \text{if } \mu_1 = 0$$
$$\leq 2^{-1} \cdot 8^{-1} \mu_1 \quad \text{if } \mu_1 \neq 0.$$

Put $\mu_2 = \psi(u_q^{p(2)})$. Proceeding by induction we define two increasing sequences $p(k)$ and $q(k)$ of positive integers such that if μ_k denotes $\psi(u_q^{p(k)}) = \lim_{j \to \infty} \psi_j(u_q^{p(k)})$ then the following inequalities are satisfied:

$$| \mu_k | \leq 2^{-1} \cdot 8^{-k} \quad \text{if } \mu_{k-1} = 0$$
$$\leq 32^{-1} \mu_{k-1} \quad \text{if } \mu_{k-1} \neq 0$$

for all $h \geq 2^{-1} p(k+1)$.

$$| \psi_h(u_q^{p(k)}) - \mu_k | \leq 2^{-1} \cdot 8^{-k} \quad \text{if } \mu_{k-1} = 0$$
$$\leq 2^{-1} \mu_{k-1} \quad \text{if } \mu_{k-1} \neq 0$$

for all $h \geq 2^{-1} p(k+1)$.

$$p(k + 1) \geq q(k + 1) \geq 2^{-1} p(k + 1) > p(k).$$

Now, either (I) there is an N such that $\mu_k \neq 0$ for all $k > N$, or (II) there exists a sequence $\{ t(k) \}_{k=1}^\infty$ of positive integers such that $\mu_{t(k)} = 0$ for all k. Suppose that (I) holds, then we define for $k > N$

$$\alpha_k = 1 - \frac{1}{\mu_{2k-1} \cdot \mu_{2k} \cdot \psi(u_q^{p(2k-1)})}$$

and
Using (11) and (12) one can easily prove that the elements v_k of E satisfy the following conditions:

\begin{align}
(14) \quad & \lim_{j \to \infty} \psi_j(v_k) = 0, \\
(15) \quad & \psi_{q(2k)}(v_k) = 1, \\
& |\psi_{q(i)}(v_k)| \leq 3 \cdot 2^{1-8^{2k}} \text{ if } i > 2k \\
& \leq 7^{-1} \text{ if } i = 2k - 1 \\
& \leq 0 \text{ if } i < 2k - 1.
\end{align}

It follows from (16) that

\begin{align}
\sum_{k=1}^{\infty} |\psi_{q(2k-1)}(v_k)| & \leq 1/4 \\
\sum_{k=1}^{\infty} |\psi_{q(2n)}(v_k)| & \leq 1/4
\end{align}

for $n = 1, 2, \ldots$.

We apply now (4) and Lemma 2 to the space $E = \text{span}\{u_k^\alpha\}_{k=1}^\infty$ where $\{u_k^\alpha\}_{k=1}^\infty$, ψ_k, $p(k)$, and $q(k)$ play the role of $\{c_i^\alpha\}_{i=1}^\infty$, ϕ_k, $n(k)$, and $i(k)$ of Lemma 2, respectively, and we get that for each $u \in U = \text{span}\{u_k^\alpha\}_{k=1}^\infty$, $||u|| = \sup_{1 \leq k \leq n} |\psi_q(k)(u)|$. We claim that if $v \in V_0 = \text{span}\{v_k\}_{k=1}^\infty$ then $||v|| = \sup_{1 \leq k \leq n} |\psi_{q(2k)}(v)|$. Indeed, if $v = \sum_{i=1}^n \lambda_i v_i$ and $|\lambda_s| = \max_{1 \leq a \leq n} |\lambda_s|$ for some $1 \leq s \leq n$ then by (17), for any k, $|\psi_{q(2k-1)}(v)| \leq 1/4 |\lambda_s|$ while $|\psi_{q(2k)}(v)| \geq 3/4 |\lambda_s|$, and this proves the assertion. Define now a sequence $\{w_k\}_{k=1}^\infty$ in c_0 by $w_k = (\psi_q(2k)(v_k), \psi_q(4)(v_k), \psi_q(8)(v_k), \ldots)$. Our discussion above shows that the subspace $V_0 = \text{span}\{v_k\}_{k=1}^\infty$ of X is isometric to the subspace $W = \text{span}\{w_k\}_{k=1}^\infty$ of c_0 (the transformation $T: V_0 \to W$ defined by $T(\sum_{i=1}^n \gamma_i v_i) = \sum_{i=1}^n \gamma_i w_i$ for any $\sum_{i=1}^n \gamma_i v_i \in V_0$ can be extended to the desired isometry). The sequence $\{w_k\}_{k=1}^\infty$ satisfies, by (15) and (17), the assumptions of Lemma 3 and hence $W = c_0$. It is easy to see that (15), (16), and (17) yield the existence of a sequence $\{y_k\}_{k=1}^\infty$ in V_0 such that $\psi_{q(2j)}(y_k) = \delta_{j,k}$, $k, j = 1, 2, \ldots$. Consider the sequence $\{y_{2k-1} - y_{2k}\}_{k=1}^\infty$; obviously it spans in V_0 a subspace V isometric to c_0 and

\begin{align}
(18) \quad & \left\| \sum_{k=1}^{\infty} \lambda_k (y_{2k-1} - y_{2k}) \right\| = \max_{1 \leq k} |\lambda_k|
\end{align}

for any sequence $\{\lambda_k\}$ in c_0. We note that ψ_j is defined to be the restriction of $\phi_n(j)$ to E and that $\{n(j)\}$ are chosen such that $\lim_{j \to \infty} \phi_n(j)(x)$ exists for all $x \in X$. Put $\phi_j = \phi_n(q(2j))$ and define for every $x \in X$.
\[Px = 2^{-1} \sum_{j=1}^{\infty} (\phi_{2j-1}(x) - \phi_{2j}(x)) (y_{2j-1} - y_{2j}). \]

The transformation \(P \) is obviously a projection from \(X \) onto \(V \) since \(\lim_{j \to \infty} (\phi_{2j-1}(x) - \phi_{2j}(x)) = 0 \) for all \(x \in X \). Moreover, \(\|Px\| = 2^{-1} \sup_{x \in D} |\phi_{2j-1}(x) - \phi_{2j}(x)| \leq \|x\| \) by Corollary 2, and hence \(\|P\| = 1 \).

It remains to consider the possibility (II). If (II) holds, we define \(v_k = \psi_{q(k)}(v_k) \) and \(w_k = (\psi_{q(k)}(v_k), \psi_{q(k+1)}(v_k), \ldots) \) in \(c_0 \). Again, let \(W = \text{span} \{ w_k \}_{k=1}^{\infty} \) and \(V_0 = \text{span} \{ v_k \}_{k=1}^{\infty} \), it is easy to show that \(V_0 \) and \(W \) are isometric and that the sequence \(\{w_k\} \) satisfies the assumptions of Lemma 3, and hence \(V_0 \) is isometric to \(c_0 \). The construction of \(V \) and \(P \) is done exactly in the same way. This proves Theorem 1.

4. Concluding remarks. A. Let \(X \) be a separable Banach space whose dual is an \(L_1 \) space and assume that the unit cell of \(X \) has at least one extreme point. Then \(X \) contains a subspace \(V \) isometric to \(c_0 \) (the space of convergent sequences \(X = \{x^n\} \) of reals with \(\|x^n\| = \sup_n |x^n| \)) such that there is a projection of norm 1 from \(X \) onto \(V \). This assertion follows from the following considerations (which are only a sketch of the proof): It was observed by Semadeni [6] that a space satisfying the assumptions of our assertion is isometric to a space \(\alpha(s) \) of affine continuous functions on a Choquet simplex \(s \). Using the methods of [5] one can show that if \(e \) denotes the unit function on \(s \) then the bases \(\{e^n_i\}_{i=1}^{n} \) \(n = 1, 2, \ldots \) can be chosen such that \(e = e_1^1 \) and \(\phi_j(e) = 1 \) for all \(j \). The proof of Theorem 1 now shows that the subspace \(V \) spanned by \(\{y_k\}_{k=1}^{\infty} \) and \(e_1^1 \) in \(X \) is isometric to \(c_0 \). The desired projection is given by \(P(x) = \phi(x) e_1^1 + \sum_{j=1}^{\infty} (\phi_j(x) - \phi(x)) y_j. \)

B. Given a sequence \(\{m(i)\}_{i=1}^{\infty} \) of positive integers, the space \(X \) and the system \(\{e^n_i\}_{i=1}^{n} \) of bases described at the beginning of §2 we define \(x_i = e_i^{s(k)} \) if \(s(k-1) < i \leq s(k) \), where \(s(0) = 0 \) and \(s(k) = \sum_{i=1}^{k} m(i) \). The sequence \(\{x_i\}_{i=1}^{\infty} \) satisfies the property that

\[
\sum_{i=s(k)+1}^{s(k+1)} \lambda_i x_i \leq \max_{s(k) < i \leq s(k+1)} |\lambda_i|
\]

and by the proof of Lemma 2 it forms a basis in \(X \). Call the bases \(\{x_i\} \) and \(\{y_i\} \) equivalent if the convergence of \(\sum_{i=1}^{n} \alpha_i x_i \) is equivalent to the convergence of \(\sum_{i=1}^{n} \alpha_i y_i \) for any real sequence \(\{\alpha_i\}_{i=1}^{\infty} \). It follows that if the basis \(\{e_i^n\}_{i=1}^{\infty} \) of \(X \) is not equivalent to the unit vector basis of \(c_0 \) then by choosing the sequence \(\{m(i)\} \) suitably one can construct infinitely many mutually nonequivalent bases of the form \(\{x_i\}_{i=1}^{\infty} \).
References

University of California, Berkeley