Let G be a locally compact Hausdorff group. Let $C_0(G)$ denote the set of all complex-valued continuous functions on G such that for each $\varepsilon > 0$, there exists a compact subset K of G such that $|f(x)| < \varepsilon$ for all $x \in K$. Let $C_00(G)$ be the subset consisting of functions in $C_0(G)$ with compact support. Suppose $V(G)$ be the set of all real or complex regular Borel measures on G which are finite on compact sets. The subset $M(G)$ which have finite total variation is the dual of $C_0(G)$. For $\mu \in V(G)$ and $s \in G$ let μ_s be the measure in $V(G)$ defined by $\mu_s(E) = \mu(Es^{-1})$ for each Borel set E. A measure μ is said to have separable orbit if there is a countable subset $C \subseteq G$ with the property that $s \in G$ and $\varepsilon > 0$ there exists a $c \in C$ such that $|\mu_s - \mu_c|(G) = \|\mu_s - \mu_c\| < \varepsilon$.

In Theorem 2 of [2, p. 570], it was proved that a measure with separable orbit is absolutely continuous if G is second countable. We shall give a proof of this result without the second countability of G. When G is not σ-compact, $\mu \in V(G)$ has separable orbit if and only if G contains an open-closed subgroup H whose index is at most countable and μ on each coset of H is some multiple of the Haar measure on that set.

We begin with the following lemma which has been proved in [2, p. 570] under the condition that G is second countable. We give a different argument without this restriction.

Lemma. For every μ in $V(G)$ which has separable orbit, $\lim_{s \to c}\|\mu_s - \mu_c\| = 0$. Thus if μ is in $M(G)$, the function $s \mapsto \mu_s$ is continuous.

Proof. For each integer $m > 0$,

$$G = \bigcup_{c \in C} \{x \in G: \|\mu_x - \mu_c\| \leq 1/m\}.$$

Let x_α be in $S_\varepsilon = \{x: \|\mu_x - \mu_c\| \leq 1/m\}$ and converge to x. Since the function $f(x_\alpha)$ converges to $f(x)$ uniformly with every f in $C_00(G)$,

$$\lim \int f(s) d\mu_{x_\alpha}(s) = \lim \int f(sx_\alpha) d\mu(s) = \int f(s) d\mu_x(s).$$

Thus $\int f(s) d(\mu_x - \mu_c) = \lim \int f(s) d(\mu_{x_\alpha} - \mu_c) \leq \lim \sup \|\mu_{x_\alpha} - \mu_c\| \|f\|_\infty \leq \|f\|_\infty /m$ for all $f \in C_00(G)$. So $\|\mu_x - \mu_c\| \leq 1/m$, and S_ε is closed. As
G is locally compact Hausdorff, it is of second category and there is a \(c_m \) so that \(S_m = \{ x : \| \mu_x - \mu_{c_m} \| \leq 1/m \} \) has interior. Then there exists a neighborhood \(U_m \) of the identity of \(G \), such that \(x_m U_m \subseteq S_m \). Now for each \(s \in U_m \), we have
\[
\| \mu_s - \mu_t \| = \| \mu_s x_m - \mu_{c_m} \| \leq \| \mu_s x_m - \mu_s c_m \| + \| \mu_{c_m} - \mu_{c_m} \| \leq 2/m.
\]
Thus \(\lim_{s \to e} \| \mu_s - \mu \| = 0 \).

Theorem 1. Every measure \(\mu \) in \(V(G) \) which has a separable orbit is absolutely continuous.

Proof. For every compact set \(K \) in \(G \) we have
\[
| \mu_s - \mu_t | (K) \leq \| \mu_s - \mu_t \|.
\]
Hence \(\mu_t(K) \) is continuous as a function of \(t \) and \(\mu \) is absolutely continuous [3, p. 230].

If \(G \) is not \(\sigma \)-compact, then it has an open-closed subgroup \(K \) such that \(G/K \) is uncountable [1, p. 34]. Every \(\mu \in M(G) \) is supported on a countable union of cosets of \(K \). So the orbit of \(\mu \) cannot be separable unless \(\mu = 0 \). We wish to thank the referee for the following:

Theorem 2. Suppose \(G \) is not \(\sigma \)-compact. Then \(\mu \in V(G) \) has separable orbit if and only if there is an open-closed subgroup \(H \) of \(G \) whose index in \(G \) is at most countable, and such that the restriction of \(\mu \) to each coset of \(H \) is a multiple of the Haar measure on that set. In particular, if \(\mu \) has separable orbit, then its orbit is at most countable.

Proof. Let \(H \) be the set \(\{ s \in G : \| \mu_s - \mu \| < \infty \} \). For any \(s, t \in H \),
\[
\| \mu_s t^{-1} - \mu_t \| \leq \| \mu_s - \mu_t \| + \| \mu_t - \mu \| < \infty.
\]
Hence \(H \) is a subgroup. By the Lemma, \(H \) is open and thus closed. Since the orbit of \(\mu \) is separable, \(H \) has at most countable index in \(G \). Moreover, \(H \) is not \(\sigma \)-compact. For all \(t \in H \), \(\mu_t - \mu \in M(G) \) has a separable orbit. So \(\mu_t - \mu = 0 \) and \(\mu \) is invariant under translation by elements in \(H \). Thus \(\mu \) on coset of \(H \) must be a multiple of Haar measure on that set. The converse is clear.

Theorem 3. If \(G \) is \(\sigma \)-compact, and \(\mu \in V(G) \) is such that \(\lim_{s \to e} \| \mu_s - \mu \| = 0 \), then \(\mu \) has separable orbit. In particular, \(\mu \in M(G) \) is absolutely continuous if and only if it has separable orbit.

Proof. Again let \(H \) be the set \(\{ s \in G : \| \mu_s - \mu \| < \infty \} \). As in the proof of Theorem 2, \(H \) is an open-closed subgroup. Since \(G \) is \(\sigma \)-compact, it has the Lindelöf property. The index of \(H \) in \(G \) is at most countable. Now the map \(s \to \mu_s - \mu \) on \(H \) is continuous in the total variation norm. So the set \(\{ \mu_s - \mu : s \in H \} \) is \(\sigma \)-compact and thus separable. It follows
that the orbit of \(\mu \) under translation by elements of \(H \) is separable. Since the index of \(H \) in \(G \) is at most countable, the orbit of \(\mu \) is separable.

Bibliography

Portland State University