THE STRONG-BOUNDED TOPOLOGY ON GROUPS OF AUTOMORPHISMS OF A VON NEUMANN ALGEBRA

ROBERT R. KALLMAN

0. Introduction. Let R be a von Neumann algebra on the Hilbert space H, G a topological group, and $a \mapsto \varphi(a)$ a representation of G as a group of $*$-automorphisms of R. Recall that $a \mapsto \varphi(a)$ is continuous in the strong-bounded topology if and only if

$$\sup_{T \in R, \|T\| \leq 1} \| [\varphi(a)(T) - T]x \| \to 0 \quad (a \to e)$$

for all $x \in H$. The purpose of this note is to show that for certain von Neumann algebras R and certain groups of $*$-automorphisms $\varphi(a)$, the continuity of $\varphi(a)$ in the strong-bounded topology is a very restrictive condition. For example, if R is abelian and $s \mapsto \varphi(s)$ is a one-parameter group of $*$-automorphisms of R, continuous in the strong-bounded topology, then $\varphi(s)$ is the identity automorphism for all s. If R is either a I_∞ factor or a III_∞ factor (and H is separable), then a strong-bounded continuous one-parameter group of inner automorphisms must be uniformly continuous. Hence, strong-bounded continuous groups of automorphisms are probably not useful in quantum field theory, since the corresponding Hamiltonian operators have bounded spectrum.

The author would like to thank L. Bongaarts for a number of stimulating conversations on the role of automorphisms of von Neumann algebras in quantum field theory.

The notation and terminology of this note is that of Dixmier [1].

1. The results. We make two preliminary remarks before going on to the main theorems.

First, note that if $x \in H$ is cyclic for R' and

$$\sup_{T \in R, \|T\| \leq 1} \| [\varphi(a)(T) - T]x \| \to 0 \quad (a \to e),$$

then $a \to \varphi(a)$ is continuous in the strong-bounded topology.

The second remark is contained in the following lemma.

Lemma 1.1. Let R be a von Neumann algebra on H, G a topological group, and $a \to \varphi(a)$ a representation of G as a group of $*$-automorphisms

Received by the editors January 17, 1969.

1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; supported in part by N.S.F. grant GP-9141.

367
of R, continuous in the strong-bounded topology. Let S be a von Neumann algebra and $\phi: R \to S$ a $*$-isomorphism. Then $a \to \phi(a) \circ \phi^{-1}$ is a representation of G as a group of $*$-automorphisms of S, continuous in the strong-bounded topology.

Proof. By Dixmier [1, Théorème 3, p. 58], it suffices to consider three special cases: (1) ϕ is an ampliation $\phi: T \to T \otimes I$, where I is the identity on some Hilbert space K; (2) ϕ is an induction, $\phi: T \to T_E$, where E is a projection in R' with central support equal to I; (3) ϕ is a spatial isomorphism. Cases (2) and (3) are easy and are left to the reader. Case (1) may be reformulated as follows. There exists some index set A such that $H \otimes K = \sum_{\alpha \in A} \oplus H_\alpha$, where for all $\alpha \in H_\alpha$ is a copy of H. ϕ then has the form $\phi: T \in R \to \sum_{\alpha \in A} \oplus T_\alpha \in R \otimes I$, where $T_\alpha = T$ for all α. Given $x \in H \otimes K$, choose indices $\alpha_1, \ldots, \alpha_n$ such that $x_{\alpha_1} \otimes \cdots \otimes x_{\alpha_n}$ is as close in norm to x as desired. Here x_β is the βth component of x. Then choose δ so that

$$\sup_{|s| \leq \delta, \|T\| \leq 1, 1 \leq i \leq n} \| \phi(s)(T) - T \| x_{\alpha_i}$$

is as small as desired. Simple inequalities complete the proof. Q.E.D.

Theorem 1.2. Suppose R is an abelian von Neumann algebra and $s \to \phi(s)$ is a one-parameter group of $*$-automorphisms of R, continuous in the strong bounded topology. Then $\phi(s)$ is the identity automorphism for all s.

Before proving Theorem 1.2, we make a few preliminary remarks and prove a preliminary lemma.

Let ϕ be a $*$-automorphism of R. Recall that ϕ is freely acting on R if, given a nonzero projection P in R, there exists a nonzero projection Q in R such that $Q \leq P$ and $Q \perp \phi(Q)$. In general, there exist projections P and Q, fixed under ϕ, such that ϕ is the identity on R_Q and is freely acting on R_P. For each $\phi(s)$, let P_s and Q_s be the corresponding P and Q. Note that $P_s = P_{-s}$ and $Q_s = Q_{-s}$. Theorem 1.2 will be proved if we can show $P_s = 0$ for all s.

Every abelian von Neumann algebra is $*$-isomorphic to a maximal abelian von Neumann algebra. Hence, by Lemma 1.1 it suffices to consider the case in which R is maximal abelian. In this case the spectral theorem states that R is unitarily equivalent to the multiplication algebra of some measure space (M, μ). From now on we assume that R is such a multiplication algebra.

Next, a lemma needed in the proof of Theorem 1.2.
Lemma 1.3. Let \((\Omega, \nu)\) be a measure space, \(f \in L^2(\Omega, \nu)\), and \(\varphi\) a freely acting \(*\)-automorphism of \(L^\infty(\Omega, \nu)\). Then there exists a projection \(P \in L^\infty(\Omega, \nu)\) such that \(P \perp \varphi(P)\) and \(\|Pf\|_2 \geq \frac{1}{2}\|f\|_2\).

Proof. By Zorn's Lemma, choose a maximal projection \(P\) such that \(P \perp \varphi(P)\). \(P\) is nonzero since \(\varphi\) is freely acting on \(L^\infty(\Omega, \nu)\). Let \(Q = P + \varphi(P)\). Claim \(\varphi(I - Q) \leq P\). To show this it suffices to show that \(\varphi(I - Q) \leq Q\). If \(R = \varphi(I - Q) \cdot (I - Q) \neq 0\), then \(\varphi^{-1}(R) \leq I - Q \perp Q\) and \(R \leq I - Q \perp Q\). Since \(\varphi\) is freely acting, there exists a nonzero projection \(S \leq \varphi^{-1}(R)\) such that \(S \perp \varphi(S)\). But \(S \leq \varphi^{-1}(R) \perp Q\) and \(\varphi(S) \leq R \perp Q\). This contradicts the maximality of \(P\). Hence, \(\varphi(I - Q) \leq P\). At least one of \(\|Pf\|_2\), \(\|\varphi(P)f\|_2\), and \(\|I - Qf\|_2\) is greater than or equal to \(\frac{1}{2}\|f\|_2\). But \(I - Q \perp \varphi(I - Q)\), \(P \perp \varphi(P)\), and \(\varphi(P) \perp \varphi^2(P)\). The result follows. Q.E.D.

Easy examples show that the constant \(\frac{1}{2}\) in the above lemma is best possible.

Proof of Theorem 1.2. Let \(s\) be a positive real number, \(Q\) is a projection in \(L^\infty(M, \mu)\) corresponding to a measurable subset of \(M\) of finite measure, and \(\chi_Q\) the characteristic function of \(Q\). Now \((P_s, \mu)\) is a measure space and \(\varphi(s)\) is a freely acting \(*\)-automorphism of \(L^\infty(P_s, \mu)\). By Lemma 1.3 there exists a projection \(R \in L^\infty(P_s, \mu)\) such that

\[
\left[\int_{P_s} R\chi_Q d\mu \right]^{\frac{1}{2}} \geq \frac{1}{3} \left[\int_{P_s} \chi_Q d\mu \right]^{\frac{1}{2}}
\]

and \(R \perp \varphi(s)(R)\).

\[
\| [\varphi(s)(R) - R] \chi_Q \|_2^2 = \| P_s [\varphi(s)(R) - R] \chi_Q \|_2^2 = \left[\int_{P_s} | \varphi(s)(R) - R |^2 \chi_Q d\mu \right]^{\frac{1}{2}}
\]

\[
= \left[\int_{P_s} [\varphi(s)(R) \chi_Q + R \chi_Q] d\mu \right]^{\frac{1}{2}} \geq \left[\int_{P_s} R \chi_Q d\mu \right]^{\frac{1}{2}}
\]

\[
\geq \frac{1}{3} \left[\int_{P_s} \chi_Q d\mu \right]^{\frac{1}{2}} = \frac{1}{3} \mu(P_s Q)^{\frac{1}{2}}.
\]

Hence,

\[
9 \sup_{|r| \leq n, T \in R, \|T\|_1 \leq 1} \| [\varphi(r)(T) - T] \chi_Q \|_2^2 \geq \mu(P_s Q).
\]

If \(\varphi\) is a \(*\)-automorphism of \(R\) and \(\varphi\) leaves a projection \(R\) absolutely fixed, then \(\varphi^n\) leaves \(R\) absolutely fixed \((n \geq 1)\). Hence, \(Q_s \leq Q_s\), and therefore \(P_s \geq P_s\). From this it follows that
\[\mu(P_sQ) \leq \mu(P_s/nQ) \]
\[\leq 9 \sup_{|r| \leq s/n, T \in \mathcal{R}, \|T\| \leq 1} \| [\varphi(r)(T) - T]XQ \|_2 \to 0 \quad (n \uparrow + \infty). \]

Hence, \(P_s \) is orthogonal to \(Q \). Since \(Q \)’s corresponding to measurable sets of finite measure generate \(\mathcal{R} \), \(P_s = 0 \) for all \(s \).

As noted above, this proves Theorem 1.2. Q.E.D.

Theorem 1.4. Suppose \(\mathcal{R} \) is either: (1) a \(I_\infty \) factor; or (2) \(\mathcal{H} \) is separable and \(\mathcal{R} \) is a \(III_\infty \) factor. Let \(s \to U(s) \) be a strongly continuous one-parameter unitary group in \(\mathcal{R} \). Let \(\varphi(s)(T) = U(s)TU(-s) \quad (T \in \mathcal{R}) \). Suppose \(\varphi(s) \) is continuous in the strong-bounded topology. Then \(s \to U(s) \) is uniformly continuous.

Proof. Assume \(\mathcal{R} \) is a \(I_\infty \) factor. Let \(U(s) = e^{iA} \). \(U(s) \) is uniformly continuous if and only if \(A \) is bounded. If \(U(s) \) is not uniformly continuous, assume that the spectrum of \(A \) is unbounded on the positive real axis (otherwise consider the one-parameter unitary group \(V(s) = U(-s) \)). Let \(U(s) = \int_{-\infty}^{\infty} e^{i\lambda s}dE(\lambda) \). Then there exist integers \(n_0 < n_1 < \cdots \uparrow + \infty \) such that \(E([n_k, n_k+1)) \neq \emptyset \quad (k \geq 0) \). Choose a minimal projection \(P_0 \leq E([n_0, n_0+1)) \) and \(x \in P_0(\mathcal{H}), \quad \|x\| = 1 \).

Choose partial isometrics \(U_k \quad (k \geq 1) \) such that \(U_k^*U_k = P_0 \) and \(P_k = U_kU_k^* \leq E([n_k, n_k+1)) \). Now since multiplication on the right by \(U(s) \) carries the unit ball of \(\mathcal{R} \) onto itself

\[
\sup_{T \in \mathcal{R}, \|T\| \leq 1} \| [U(s)TU(-s) - T]x \| = \sup_{T \in \mathcal{R}, \|T\| \leq 1} \| [U(s)T - TU(s)]x \|.
\]

\[
\sup_{T \in \mathcal{R}, \|T\| \leq 1} \| [U(s)U_k - U_kU(s)]x \|
\geq \| \exp(in_k s)E([n_k, n_k+1))U_kx - \exp(in_0 s)U_kE([n_0, n_0+1])x \|
- \| U(s)U_kx - \exp(in_k s)E([n_k, n_k+1))U_kx \|
- \| U_k \exp(in_0 s)E([n_0, n_0+1])x - U_kU(s)x \|
\geq \| \exp(in_k s) - \exp(in_0 s) \|
\geq \sup_{\lambda \in [n_k, n_k+1]} \| \exp(i\lambda s) - \exp(in_k s) \|
\geq 1 \| \exp(i(n_k - n_0)s) - 1 \| - 2 \sup_{\lambda \in [0, 1]} \| \exp(i\lambda s) - 1 \|.
\]

Now \(n_k - n_0 \uparrow + \infty \) as \(k \uparrow + \infty \). Hence,

\[
\lim \sup_{s \to 0, T \in \mathcal{R}, \|T\| \leq 1} \| [U(s)TU(-s) - T]x \| = 2.
\]

Contradiction. Hence, \(U(s) \) must be uniformly continuous.
Now assume that R is a III_∞ factor on a separable Hilbert space. The proof of the theorem for this case follows the proof of the I_∞ case almost verbatim. The only twist is the use of the fact that two non-zero projections in a III_∞ factor on a separable Hilbert space are equivalent in the Murray-von Neumann sense. The details are left to the reader. Q.E.D.

We remark that if R is a I_∞ factor on a separable Hilbert space, then the following apparent strengthening of Theorem 1.4 is true. If $\varphi(s)$ is an arbitrary one-parameter group of $*$-automorphisms of R, continuous in the strong-bounded topology, then $s \mapsto \varphi(s)$ is continuous in the norm topology. A sketch of the proof of this follows. $\varphi(s)$ is inner for each s since R is a I_∞ factor. $\varphi(s)$ continuous in the strong-bounded topology implies that $\varphi(s)$ is continuous in the weak-bounded topology. Since H is separable, a result of Kadison ([2, Theorem 4.13, p. 195]) now shows that there exists a strongly continuous one-parameter unitary group $s \mapsto U(s)$ in R such that $\varphi(s)(T) = U(s)TU(-s)$. Theorem 1.4 shows $s \mapsto U(s)$ is uniformly continuous. Easy estimates now imply that $s \mapsto \varphi(s)$ is continuous in the norm topology.

It is unknown to the author whether or not an analogue of Theorem 1.4 holds for R a II_∞ factor. The II_1 case is handled by the next theorem.

THEOREM 1.5. Let R be a II_1 von Neumann algebra and $U(s)$ a strongly continuous one-parameter unitary group in R. Let $\varphi(s)(T) = U(s)TU(-s)$. Then $s \mapsto \varphi(s)$ is continuous in the strong-bounded topology.

Proof. There exists some index set B such that $R = \bigoplus_{\beta \in B} R_\beta$, where each R_β has a faithful finite trace. Note that each $\varphi(s)$ leaves $\text{Cent } R$ fixed and hence $\varphi(s) = \bigoplus_{\beta \in B} \varphi_\beta(s)$, where $\varphi_\beta(s)$ is a one-parameter group of $*$-automorphisms of R_β. An argument like that used in the proof of Lemma 1.1 shows that $\varphi(s)$ is continuous in the strong-bounded topology if each $\varphi_\beta(s)$ is. Hence, we may assume R has a faithful finite trace. By Lemma 1.1, we may assume R has a trace vector x. By the remarks preceding Lemma 1.1, it suffices to show that

$$\sup_{T \in \mathcal{R}, \|T\|_2 \leq 1} \|[\varphi(s)(T) - T]x\| \to 0 \quad (s \to 0);$$

i.e.,

$$\sup_{T \in \mathcal{R}, \|T\|_2 \leq 1} \|\varphi(s)(T) - T\|_2$$

$$= \|U(s)T - TU(s)\|_2 \to 0 \quad (s \to 0)$$

(here $\|\cdot\|_2$ denotes the trace norm).
Let P be a "large" spectral projection of

$$U(s) = \int_{-\infty}^{+\infty} e^{i\lambda s} dE(\lambda) \quad \text{(say } P = E([-n, n]) \text{ for large } n)$$

such that $\|I-P\|_2 < \epsilon$. Let $T \in \mathcal{R}$, $\|T\| \leq 1$. Then

$$\|\varphi(s)(T) - T\|_2 \leq \|PU(s)PTP - PTU(s)P\|_2 + 6\epsilon$$

$$\leq 2\|PU(s)P - P\|_\infty + 6\epsilon.$$

$\|PU(s)P - P\|_\infty \to 0$ as $s \to 0$ since $PU(s)P$ is a unitary operator with bounded spectrum on $P(H)$. Hence, $\|\varphi(s)(T) - T\|_2 \to 0$ as $s \to 0$.

Q.E.D.

We note that Theorem 1.5 is not true for an arbitrary one-parameter group $\varphi(s)$ of $*$-automorphisms of a II_1 factor. For example, for $n \geq 1$, let R_n be the algebra of all 2×2 matrices, τ_n the normalized trace on R_n, and $\varphi_n(s)$ the $*$-automorphism of R_n given by the unitary $e^{ins}0e^{-ins}$. Further, let S be the C^*-tensor product $\otimes_{n \geq 1} R_n$, $\tau = \otimes_{n \geq 1} \tau_n$,

$$\begin{pmatrix} e^{ins} & 0 \\ 0 & e^{-ins} \end{pmatrix}$$

and $\varphi(s) = \otimes_{n \geq 1} \varphi_n(s)$. If Π_r is the cyclic representation of S with cyclic vector ξ, on the Hilbert space H, corresponding to the state τ, Π_r is faithful, and $\Pi_r(S)'s$, the strong closure of $\Pi_r(S)$, is a II_1 factor. Since $\varphi(s)$ leaves τ invariant, there exists a strongly continuous one-parameter unitary group $U(s)$ on H, such that

$$U(s)\Pi(T)U(-s) = \Pi(\varphi(s)(T)) \quad (T \in S).$$

Easy computations show that

$$\lim_{s \to 0, T \in \Pi_r(s), \|T\| \leq 1} \| [U(s)TU(-s) - T]\xi \| = 2.$$

Bibliography

Massachusetts Institute of Technology