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In this paper we shall construct an uncountable set of numbers

which exhibit to some extent the unusual properties of the classes of

algebraic integers studied by Pisot, Vijayaraghavan and Salem (see

[l], [3], [5], [6]). We denote by T the set of real algebraic integers

0>1 such that all conjugates of 8 lie within or on the unit circle. As

usual ||x|| will denote the distance from the real number x to the near-

est integer. If 0£F, and e>0 is arbitrary then there are numbers X

in the field Q(8) such that ||X0n|| ge for re = 0, 1, 2, • • • (see [6]; com-

bine Theorem 2, p. 3 with the argument on p. 33). On the other hand,

a result due to Pisot [3 ] states that if 8 > 1, X ̂  1 are real and such that

(1) ||A0»|| g (2e6(8 + 1)(1 + log X))"1        n = 0, 1, 2, • • •

then 6ET, deg 0^ [log X] + l, and \EQ(8).
It is reasonable to ask how much this result can be improved by

increasing the right member of (1), and still obtaining the conclusion

that 0 is algebraic. Our construction will show that there are arbitrary

large transcendental 0>3, and X arbitrarily close to 2 such that

(2) ||X0"|| g (8 - l)~l(B - 3)-1        for n = 0, I, 2, • ■ • .

Thus, for example ||X0"|| ̂ lO(2e0(0+l)(l+log X))-1 for all re ̂ 0, need

not imply that 6 is algebraic, (see the remarks following Theoreml).

Pairs (X, 8) satisfying (2) are quite rare, for Weyl [7] shows that,

for fixed 8, the sequence {X0n| is uniformly distributed modulo 1 for

almost all real X, and Koksma [2] shows that, for fixed X, the sequence

{X0"| is uniformly distributed modulo 1 for almost all real 0>1.

However, if X and 8 satisfy (2), {X0n} is not even dense modulo 1.

Our main result is the following:

Theorem 1. Let a, 0 be real numbers with 3<a<0, and let aa be an

integer satisfying a0>(a+l)(a — l)~1(0—a)~l. Then there is an un-

countable set SE [a, 0], such that for each 8ES, there is a real number

X=X(0)>O for which

(3) \\\6"\\ g (a - l)-\6 - 1)-'        for n = 0, 1, • ■ • .

The integer a0 is the nearest integer to X(0) for all 8ES.
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Proof. We construct each element in the set 5 as the limit of a

sequence {an+i/a„} where each an is a positive integer. To insure

that 5 is uncountable we obtain a one-one correspondence between

5 and the set 3 of functions mapping Z+—* {0, 1}, (here Z+

= {1, 2, ••• }).

To begin with, we note that a0> (a + l)(a —1)_1(0 — a)-1 implies

that

(ao0 - (a- I)"1) - (aoa + (a - l)~l) > 1.

Thus there is an integer ax with

(4) aoa+ (a- l)~l < «i < a„0 - (a - l)"1.

Let ax be any such integer (say the smallest). Now, if /G3, we define

a sequence {an(f)} of integers by

a0(f) = a0,        ax(f) = ax,

(5) r 2 .
an+x(f) = K(/)/«n-i(/)J +/(«),       n = 1, 2, • • • ,

where as usual the square brackets denote the integer part.

Now define pn(f) =a„(f)/an-x(f)- For the moment we shall write

a„ = a„(f), pn=Pn(f)- Note that (5) implies

(6) I pn+X — Pn |     ̂   On   , W  =   1,  2,   •   •   •  .

Thus, we have

n n

(7) | pn+x — Pi I     ^   ^ ak     =   ^ (pkpk-X  •   ■   ■ Pi)     «0   •
ik-l A—1

We wish to show by induction that a<p„<0 for all w. First observe

that (4) implies a<px = ax/a0<p. Assume that a<pn<& for k

= 2,3, • ■ ■ , n. Then, from (7) we have

I I -i «fi   -*        —i. .-i
I Pn+l - Pi |    < Hi    // a      < ao   (a — 1)     ,

A-l

and hence

(8) Pi — a0 (a — 1)     < pn+1 < px + a0 (a — 1)    .

However, by (4),pi — a<rl(a — l)_1 = (ai — (a — l)~1),a0~l>a, and simi-

larly the right member of (8) is less than 0, so a<pn+x<@ completing

the induction.

Again using (6), we can show {p„} is a Cauchy sequence, for if

n<m, we have
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m-l

|  Pm  —  Pn I     ̂    £   I P*+l  — Pk |

(9)
m—1 m—1
^     -1 ^-,     -*+n-l   -1 -1 -1

^ 2-,ak   < lu « a"-i < an-x(a — 1)
k=n k=n

where we have used ak=pkpk-.x ■ ■ • p»an-i>a*_n+1an_i. Since a>3,

clearly a„>a"a0—»» so (9) shows that {p„} is a Cauchy sequence

hence converges to d=8(f), say, with a =0=0.

We next show that if/, gG3,/^2, then 6(f) ̂ 6(g). For, if/^g, let
f(k)=g(k) ior k = l, 2, • • • , w-2 and/(w-l)>g(w-l) so/(w-l)

= 1, g(n —1)=0.  Then ak(f)=ak(g)  for & = 1,  2, • • • ,  w —1, and

o»(/')=o»(g) + l- Thus

(10) p„(/) - Pn(g) = (an(f) - an(g))/an-x(f) = <£-x(f).

But, for & = w,

I Pk+i(f) - Pk+i(g) |

^   I Pk(f) ~ Pk(g) |   -  | P*+i(/) - Pk(f) |   -  | Pk+x(g) - Pk(g) |

(11) =  | Pk(f) - Pk(g) |   - a~k\f) - ak~\g),        by (6)

=  I Pk(f) ~ Pk(g) |   - 2a~h+n~\~-x(f).

Hence, we have

I 9(f) - 6(g) |   =   lim   | Pm(f) - Pm(g) I

=    | P«(/)   - Pn(g) |    +   E  { -  |  «(/)   - Pk(g) |

+    |  P*+l(/)   -  Pk+l(g) |   }

=   I P»(/) - Pn(g) |   - Z 2^+n-1a;2i(/),   by (11)
k-n

= a^ii(/)(l - 2(a - 1)_1) > 0,        since a > 3.

LetS= {9(f) :fES}.U6=e(f)ES, and {a„} = {an(f)} is the sequence
defined above, we claim that {and~n} converges to a number X>0,

and that

(13) | 0, - Xfl» |   = (d - l)-x(a - 1)_1        for n = 0, 1, • • • .

To prove this, first let m—»«> in (9) to obtain

(14) | e - Pn I < a~-x(a - if1.
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Multiplying (14) by a„_i0~", we obtain

(15) | an-xd-^" - an8~n\   < d~n(a - l)~\        n ^ 1.

Thus, 0>1 together with (15) implies {a„0-n} is a Cauchy sequence

with limit X, say, and

| an6-» - X |   g XI  I am8~m - am+i0" <m+1> |

oo

< (a ~ I) XI 0"""1 = r"(0 - l)-1(a - I)-1-
m=n

This establishes the estimate (13).

Since 8^a>3, (S-iy^a-l^Kl/^ so (13) implies that

(17) ||X0-|| ̂  (0 - 1)-K« - I)"1,       • - 0, 1, • • • .

Note also that |X —ao| ^ 1/4 so a0 is the nearest integer to X.

Remarks. In order to obtain 0 so that the estimate ||X0"||

^(0 —l)_1(a —1)_1 is of the same order of magnitude as the right

member of (1), we first choose a large and 0=a+2, say, so the re-

striction on fl0 imposed by the theorem is ao> (a + l)/2(a — 1) or

Qo^l, since a> 3. Choosing a0 = 2, we have j X — 21 ^(0 — l)_1(a —1)_1

which means X>1, and log X<log 2+e(a), where e(a)—>0 as a—>=o.

Thus we can obtain 0>1, X^l, with 0 transcendental, and

||X0»|| g lO(2e0(0 + 1)(1 + log X))-1        n = 0, 1, • • • .

Of course 10 may be replaced by any number greater than 2e(l +log 2).
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