COMPACTIFICATION OF MAPPINGS

GEORGE L. CAIN, JR.

1. **Introduction.** A mapping (continuous function) $f: X \rightarrow f(X) = Y$ is *compact* if it is closed and point inverses are compact. (These mappings are often called *perfect*, or *proper*.) A compact mapping has the property that the inverse image of any compact set is compact. This property is sometimes taken as the definition of a compact mapping, although the two definitions are not equivalent for arbitrary range Y. Exact conditions for their equivalence are given in reference [6].

A compactification of f is a pair (X^*, f^*) where X^* is a Hausdorff space containing X as a dense subspace, and f^* is a compact mapping of X^* onto Y such that $f^*|_{X=f}$. G. T. Whyburn introduced the notion of a mapping compactification in 1953 when he showed that every mapping of one locally compact Hausdorff space onto another is a partial mapping of a compact mapping on a Hausdorff space [4], [7]. He also noted in reference [7] that a compactification for any mapping from one completely regular space onto another can be obtained by restricting the extension $\bar{f}: \beta X \rightarrow \beta Y$ to $\bar{f}^{-1}(Y)$.

In this paper we study some general properties of mapping compactifications and construct a class of so-called filter space compactifications of a mapping from a completely regular space onto a regular space. Each of these compactifications is associated in a natural way with a compactification of the domain of f. For Y locally compact, we show that the domain X is completely regular if and only if f has a compactification; and if X is completely regular, every compactification of f is a filter space compactification. We shall assume that all spaces are Hausdorff. Thus in this paper, regular spaces, completely regular spaces, etc., are Hausdorff.

2. Mapping compactifications. Let R denote the collection of all points p in Y having the property that there is a filter F on X with no accumulation point such that f(F) converges to p. The following result then follows directly from Theorem 1, p. 101, of [1].

PROPOSITION 2.1. The restriction of f to $f^{-1}(Y-R)$ is compact, and if f is compact, R is empty.

Presented to the Society, January 23, 1969; received by the editors January 3, 1969.

In case X is regular, we need only consider *open filters*; that is, those which have a base consisting of open sets. Specifically, we have

PROPOSITION 2.2. If X is regular, R consists of those points p in Y having the property that there is an open filter G on X with no accumulation point which is such that f(G) converges to p.

PROOF. Suppose p is in R, F has no accumulation point, and f(F) converges to p. Let $\mathbb V$ be the collection of all closed neighborhoods in X which have a member of F contained in their complement. The fact that F has no accumulation point guarantees that each x in X has at least one neighborhood in $\mathbb V$.

The collection $\alpha = \{X - V_{\alpha} | V_{\alpha} \in \mathbb{U}\}$ is a filter base. If A denotes the filter generated by α , then clearly $G = \{A \cap f^{-1}(U) | A \in A, U \text{ is a neighborhood of } p\}$ is an open filter having no accumulation point, and f(G) converges to p.

We shall let S denote the singular set of f. (S is the collection of all p in Y such that in every neighborhood of p there is a compact set with a noncompact inverse image [2], [5].) It follows easily from the fact that f restricted to $f^{-1}(Y-\operatorname{cl}(R))$ is compact and the results in reference [6] that $S \subset \operatorname{cl}(R)$, and that if Y is a k-space then $R \subset S = \operatorname{cl}(R)$.

Theorem 2.3. If (X^*, f^*) is a compactification of f, then $f^*(X^*-X)=R$.

PROOF. Let p be in R and suppose F is a filter on X such that f(F) converges to p and F has no accumulation point in X. f^* is compact, so there is an accumulation point x of F in X^*-X , and from the continuity of f it follows that $f^*(x) = p$.

For x in X^*-X , let N be the neighborhood filter of x. Since X is dense in X^* , $F = \{N \cap X \mid N \in N\}$ is a filter on X without an accumulation point in X and is such that f(F) converges to $f^*(x)$.

COROLLARY. If X is locally compact, R is closed. If in addition, Y is a k-space, then R = S.

PROOF. If X is locally compact, X is open in X^* . Thus $f^*(X^*-X)$ is closed.

A relation \geq is defined on the collection of all compactifications of f by agreeing that $(X_2, f_2) \geq (X_1, f_1)$ if there is a mapping h of X_2 onto X_1 which leaves the points of X fixed and is such that $f_2 = f_1 h$. If the mapping h can be taken to be a homeomorphism, (X_1, f_1) and (X_2, f_2) are said to be *equivalent*. It is easy to verify that the relation \geq is a partial order and that (X_1, f_1) and (X_2, f_2) are equivalent if and only if the relations $(X_2, f_2) \geq (X_1, f_1) \geq (X_2, f_2)$ hold.

In case X and Y are locally compact, Whyburn's unified space of the mapping f provides a compactification (X_w, f_w) in which $f_w | (X_w - X)$ is a homeomorphism onto R [4]. The next result shows that any compactification with this property precedes all others with respect to the partial order \geq . Thus all such compactifications of f are equivalent.

THEOREM 2.4. Suppose the domain of f is locally compact. If (X_w, f_w) is a compactification of f such that f_w restricted to $X_w - X$ is a homeomorphism, then $(X^*, f^*) \ge (X_w, f_w)$ for any compactification (X^*, f^*) of f.

PROOF. Define the function $h: X^* \to X_w$ by setting h(x) = x for x in X and $h(x) = [f_w^{-1}f^*(x)] \cap (X_w - X)$ for x in $X^* - X$. It is clear that h is a function, that $f^* = f_w h$, and that h is continuous at all points of X. To show that h is continuous at a point x in $X^* - X$, let N be the neighborhood filter of x. Then $f^*(N)$ converges to $f^*(x)$, and f_w is compact, so h(N) has at least one accumulation point z. From the fact that X is open in X_w and X^* , and h is the identity on X, it follows that x can not be in x, so x in x

Let W be a neighborhood of z. If every member of h(N) meets the complement of W, then $G = \{G \cap (X_w - W) \mid G \in h(N)\}$ is a filter on X_w with no accumulation point, and $f_w(G)$ converges to y. This contradicts the fact that f_w is compact. Thus h(N) converges to z = h(x) and h is continuous.

3. Filter space compactifications. Consider a mapping $f\colon X{\to} f(X)=Y$, where X is completely regular and Y is regular. Let \tilde{X} be a compactification (Hausdorff) of the space X. For $y{\in}Y$, let $\tilde{C}(y){\subset}\tilde{X}$ be the collection of all accumulation points in \tilde{X} of the inverse image of the neighborhood filter of y. Note that $f^{-1}(y){\subset}\tilde{C}(y)$ and $f^{-1}(y)=\tilde{C}(y)$ if and only if $y{\in}Y{-}R$.

With the above assumptions and terminology, we now have the following theorem.

THEOREM 3.1. The mapping f has a compactification (X^*, f^*) with the property that for each $y \in Y$, there is a homeomorphism h_y of $f^{*-1}(y)$ onto $\tilde{C}(y)$ which leaves the points of $f^{-1}(y)$ fixed.

We shall construct (X^*, f^*) and establish via a series of propositions that it is a compactification of f having the property in the theorem.

In constructing (X^*, f^*) , extensive use of the idea of a *filter space* as developed by F. J. Wagner [3] will be made. If \tilde{X} is a collection of open filters on X which includes the neighborhood filter of every x

in X, then \tilde{X} can be made into a topological space by taking the collection of sets $\tilde{U} = \{ F \in \tilde{X} | U \in F, U \text{ is an open subset of } X \}$ as a base for open sets in \tilde{X} . The space \tilde{X} is known as a filter space over X. It is shown in reference [3] that the function $e: X \to e(X) \subset \tilde{X}$ defined by e(x) = the neighborhood filter of x, is a homeomorphism and e(X) is a dense subspace of \tilde{X} .

If \tilde{X} is a compactification of the space X, we may consider \tilde{X} to be a filter space over X by associating with each point in \tilde{X} the trace on X of its neighborhood filter (Theorem 2 of [3]). For each filter F in \tilde{X} , consider $\alpha_v = \{F \cap f^{-1}(W_v) \mid F \in F, W_v \text{ a neighborhood of } y\}$. Each α_v that does not contain the empty set is a base for a filter on X, which we shall denote by F_v . Note that F_v is defined if and only if $F \cap f^{-1}(W_v) \neq \emptyset$ for every neighborhood W_v of v and every $v \in F$.

To avoid confusion, we shall throughout use the terminology "F is a filter on X" when F is a collection of subsets of X, and "F is a filter in X" when F is a member of X.

PROPOSITION 3.2. For F and G in \tilde{X} , $F_y = G_z$ if and only if F = G, and y = z.

PROOF. The "if" part is trivial. Assume $F_y = G_z$. The inverse image of every neighborhood of y is a member of F_y and the inverse image of every neighborhood of z is a member of G_z , so it follows from the fact that Y is Hausdorff that y = z. That F = G follows from the fact that $F \subset F_y$, $G \subset G_z$, and the Hausdorff property of \tilde{X} .

It is clear that each F_v is an open filter and that for $F = N_x$, the neighborhood filter of x, then $F_v = N_x$, where y = f(x). Let X^* denote the filter space consisting of all such F_v . Define the function f^* from X^* onto Y by setting $f^*(F_v) = y$. Then $f^*|_{X = f}$ and X is dense in X^* .

PROPOSITION 3.3. f* is continuous.

PROOF. Let R be a neighborhood of $y = f^*(F_y)$ and choose W to be an open neighborhood of y such that $cl(W) \subset R$. Now $U = f^{-1}(W)$ is a member of F_y , so $U^* = \{G_z \in X^* | U \in G_z\}$ is a neighborhood of F_y . For any $G_z \in U^*$, $f^{-1}(W) \in G_z$, so $z = f^*(G_z) \in cl(W) \subset R$.

Proposition 3.4. X^* is regular.

PROOF. Let F_{ν} and G_z be two distinct points in X^* . If $y \neq z$, the existence of disjoint neighborhoods of the two points follows from the continuity of f^* and the Hausdorff property of Y. If F = G, there are disjoint open sets U and V in X such that $U \in F$ and $V \in G$ since \tilde{X} is Hausdorff. Thus U^* and V^* are disjoint neighborhoods of F_{ν} and G_z , respectively.

Next, let $F_{\nu} \in U^*$, and choose an open $F \in F$ and a neighborhood W_{ν} of y so that $F \cap f^{-1}(W_{\nu}) \subset U$. Let M be an open neighborhood of y such that $cl(M) \subset W_{\nu}$. The space \tilde{X} is regular, so choose an open $V \subset X$ so that $V \in F$ and $cl(\tilde{V}) \subset \tilde{F}$, where \tilde{V} denotes the collection of all elements in \tilde{X} that have V as a member. Let $R = V \cap f^{-1}(M)$. We shall show that R^* is a neighborhood of F_{ν} such that $cl(R^*) \subset U^*$.

First note that since $V \in F$, we have $V \cap f^{-1}(M) = R \in F_y$, so R^* is indeed a neighborhood of F_y . If $G_z \in \operatorname{cl}(R^*)$, every open set in G_z meets R, so $z \in \operatorname{cl}(M) \subset W_y$. Let W_z be a neighborhood of z such that $W_z \subset W_y$. For every $G \in G$, we have $[G \cap f^{-1}(W_z)] \cap R \neq \emptyset$, and hence $G \cap V \neq \emptyset$ for every G in G. This means that $G \in \operatorname{cl}(\tilde{V}) \subset \tilde{F}$, or $F \in G$. Hence $F \cap f^{-1}(W_z) \in G_z$, and $U \in G_z$ since $F \cap f^{-1}(W_z) \subset U$.

PROPOSITION 3.5. If \mathfrak{F} is an open filter on X^* such that $f^*(\mathfrak{F})$ converges to some y in Y, then \mathfrak{F} has an accumulation point.

PROOF. $\mathfrak{F} \cap X = \{A \cap X \mid A \in \mathfrak{F}\}\$ is an open filter base on X since X is dense in X^* . If we consider $\mathfrak{F} \cap X$ to be a filter base on \tilde{X} , it has an accumulation point $F \in \tilde{X}$. Suppose $F \cap f^{-1}(W_v) = \emptyset$ for some F in F and neighborhood W_v of y. Choose A in \mathfrak{F} such that $f^*(A) \subset W_v$. Now $F \cap (A \cap X) \neq \emptyset$ by Lemma 3 of reference [3]; but for $x \in F \cap (A \cap X)$, the neighborhood filter N_x is a member of A and $f^*(N_x) = f(x) \in W_v$, so $f^{-1}(W_v) \cap F \neq \emptyset$, a contradiction. Thus $F \cap f^{-1}(W_v) \neq \emptyset$ for every F in F and every neighborhood W_v of Y.

We show that F_{ν} is an accumulation point of \mathfrak{F} . If not, there is an open $U \subset X$ such that $U \in F_{\nu}$ and $U^* \cap A_1 = \emptyset$ for some A_1 in \mathfrak{F} . Choose F in F and a neighborhood W_{ν} of ν so that $F \cap f^{-1}(W_{\nu}) \subset U$. Let A_2 in \mathfrak{F} be such that $f^*(A_2) \subset W_{\nu}$, and define $A = A_1 \cap A_2$. Then for any $x \in A \cap X$, it is true that $f(x) \in W_{\nu}$. Or in other words, $A \cap X \subset f^{-1}(W_{\nu})$, which contradicts our statement that $U^* \cap A_1$ is empty. It is clear from (2.1) and (2.2) that f^* is a compact mapping, so (X^*, f^*) is a compactification of f. The next proposition completes the proof of Theorem 3.1.

PROPOSITION 3.6. For each $y \in Y$, there is a homeomorphism h_y of $f^{*-1}(y)$ onto $\tilde{C}(y)$ which leaves the points of $f^{-1}(y)$ fixed.

PROOF. Let $h: X^* \to \widetilde{X}$ be defined by $h(F_y) = F$. To show that h is continuous, let U be an open set in X such that $U \subset F = h(F_y)$. Choose an open set $V \subset F$ so that $\operatorname{cl}(\widetilde{V}) \subset \widetilde{U}$. We know that $F \subset F_y$, so V^* is a neighborhood of F_y . Suppose $G_z \subset V^*$; then $V \subset G_z$, and $V \cap G \neq \emptyset$ for every $G \subset G$, which means that $G \subset \operatorname{cl}(\widetilde{V}) \subset \widetilde{U}$. Thus h is continuous.

For each $y \in Y$, let $h_y = h | f^{*-1}(y)$. It follows from (3.2) that h_y is one to one, and thus a homeomorphism since $f^{*-1}(y)$ is compact. That the

range of h_{ν} is $\tilde{C}(y)$ is a consequence of the fact that F_{ν} is defined if and only if every member of F meets the inverse image of every neighborhood of ν .

Finally, we show that any compactification (X', f') of f with X' completely regular is a filter space compactification corresponding to some compactification \tilde{X} of the space X. We have

THEOREM 3.7. Suppose (X', f') is a compactification of f with X' completely regular, and let \tilde{X} be a compactification of X', and hence of X. Then the corresponding filter space compactification (X^*, f^*) is equivalent to (X', f').

PROOF. We have $X \subset X' \subset \tilde{X}$, and will consider \tilde{X} (and hence X') to be a filter space over X. Note that the filter F on X' converges to the point $F \subset X'$, so that for any $F \subset X'$, we have $F_{\nu} \subset X^*$, where y = f'(F).

Let F_v be an element of X^* . If we consider F_v to be a filter on X', it has an accumulation point $G \subset X'$, since $f(F_v) = f'(F_v)$ converges to y. Any open set in X which is a member of G must meet every member of F, so it follows that F = G since \tilde{X} is Hausdorff. Thus f'(F) = y. It now follows that f(F) converges to y, so that $F_v = F$. Thus $X^* = X'$ and $f^* = f'$.

REFERENCES

- 1. N. Bourbaki, General topology. Part 1, Addison-Wesley, Reading, Mass., 1966.
- 2. G. L. Cain, Jr., Compact and related mappings, Duke Math. J. 33 (1966), 639-645.
- 3. F. J. Wagner, Notes on compactification. I, Nederl. Akad. Wetensch. Proc. Ser. A. 60(1957), 171-176.
- 4. G. T. Whyburn, A unified space for mappings, Trans. Amer. Math. Soc. 74(1953), 344-350.
- 5. ——, On compactness of mappings, Proc. Nat. Acad. Sci. U.S.A. 52(1964), 1426-1431.
- 6. ——, Directed families and closedness of functions, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 688-692.
 - 7. ——, Compactification of mappings, Math. Ann. 166(1966), 168-174.

GEORGIA INSTITUTE OF TECHNOLOGY