COMPACTIFICATION OF MAPPINGS
GEORGE L. CAIN, JR.

1. Introduction. A mapping (continuous function) f: X—f(X)= YV
is compact if it is closed and point inverses are compact. (These
mappings are often called perfect, or proper.) A compact mapping has
the property that the inverse image of any compact set is compact.
This property is sometimes taken as the definition of a compact
mapping, although the two definitions are not equivalent for arbitrary
range Y. Exact conditions for their equivalence are given in ref-
erence [6].

A compactification of f is a pair (X*, f*) where X* is a Hausdorff
space containing X as a dense subspace, and f* is a compact mapping
of X* onto Y such that f*| X =f. G. T. Whyburn introduced the
notion of a mapping compactification in 1953 when he showed that
every mapping of one locally compact Hausdorff space onto another
is a partial mapping of a compact mapping on a Hausdorff space
[4], [7]. He also noted in reference [7] that a compactification for
any mapping from one completely regular space onto another can
be obtained by restricting the extension f: BX—BY to f~(V).

In this paper we study some general properties of mapping com-
pactifications and construct a class of so-called filter space compactifi-
cations of a mapping from a completely regular space onto a regular
space. Each of these compactifications is associated in a natural way
with a compactification of the domain of f. For Y locally compact,
we show that the domain X is completely regular if and only if fhas a
compactification; and if X is completely regular, every compactifica-
tion of f is a filter space compactification. We shall assume that all
spaces are Hausdorff. Thus in this paper, regular spaces, completely
regular spaces, etc., are Hausdorff.

2. Mapping compactifications. Let R denote the collection of all
points p in ¥ having the property that there is a filter F on X with
no accumulation point such that f(F) converges to p. The following
result then follows directly from Theorem 1, p. 101, of [1].

ProposITION 2.1. The restriction of f to f~' (Y —R) is compact, and
if f is compact, R is empty.
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In case X is regular, we need only consider open filters; that is, those
which have a base consisting of open sets. Specifically, we have

ProrosITION 2.2. If X is regular, R consists of those points p in ¥V
having the property that there is an open filter G on X with no accumula-
tion point which is such that f(G) converges to p.

PROOF. Suppose ¢ is in R, F has no accumulation point, and f(F)
converges to p. Let U be the collection of all closed neighborhoods in
X which have a member of F contained in their complement. The
fact that F has no accumulation point guarantees that each x in X
has at least one neighborhood in V.

The collection @={X —V,| V.€V} is a filter base. If A denotes
the filter generated by @, then clearly G = {Af\f‘l(U) l AEA Uisa
neighborhood of p} is an open filter having no accumulation point,
and f(G) converges to p.

We shall let S denote the singular set of f. (S is the collection of
all p in Y such that in every neighborhood of p there is a compact set
with a noncompact inverse image [2], [5].) It follows easily from the
fact that f restricted to f~'(¥ —cl(R)) is compact and the results in
reference [6] that SCcl(R), and that if YV is a k-space then
RCS=cl(R).

THEOREM 2.3. If (X*, f*) is a compactification of f, then
f*(X*-X)=R.

PRrOOF. Let p be in R and suppose F is a filter on X such that f(F)
converges to p and F has no accumulation point in X. f* is compact,
so there is an accumulation point x of F in X*—X, and from the
continuity of f it follows that f*(x) = p.

For x in X*—X, let N be the neighborhood filter of x. Since X is
dense in X*, F= { NNX| NEN} is a filter on X without an accumu-
lation point in X and is such that f(F) converges to f*(x).

COROLLARY. If X 1s locally compact, R is closed. If in addition, V is
a k-space, then R=S.

Proor. If X is locally compact, X is open in X*. Thus f*(X*—X)
is closed.

A relation = is defined on the collection of all compactifications
of f by agreeing that (Xs, f2) 2 (X4, f1) if there is a mapping % of X,
onto X; which leaves the points of X fixed and is such that f,=f.
If the mapping % can be taken to be a homeomorphism, (X3, f;) and
(X, f2) are said to be equivalent. It is easy to verify that the relation
2 is a partial order and that (X3, f1) and (X., f;) are equivalent if and
only if the relations (X, f2) = (X1, f1) = (X3, f2) hold.
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In case X and Y are locally compact, Whyburn’s unified space of
the mapping f provides a compactification (X,, f,) in which
fuo| (X»—X) is a homeomorphism onto R [4]. The next result shows
that any compactification with this property precedes all others with
respect to the partial order =. Thus all such compactifications of f
are equivalent.

THEOREM 2.4. Suppose the domain of f is locally compact. If (X, fu)
is a compactification of f such that f, restricted to X,—X 1s a homeo-
morphism, then (X *, f*) 2 (Xu, fu) for any compactification (X *, f*) of f.

ProoF. Define the function £: X*—X, by setting Z(x) =x for x in
X and k(x) = [f7'f*(x) N (X, —X) for x in X*—X. It is clear that
h is a function, that f*=f,h, and that % is continuous at all points of
X. To show that % is continuous at a point x in X*— X, let N be the
neighborhood filter of x. Then f*(N) converges to f*(x), and f, is
compact, so k(N) has at least one accumulation point z. From the
fact that X is open in X,, and X *, and % is the identity on X, it follows
that z can not be in X, so k(IN) has exactly one accumulation point
2=h(x)in X,—X.

Let W be a neighborhood of z. If every member of A(N) meets the
complement of W, then G= {Gf\(Xw—W)IGEh(N)} is a filter on
X, with no accumulation point, and f,(G) converges to y. This con-
tradicts the fact that f, is compact. Thus £(NN) converges to 5 ="h(x)
and h is continuous.

3. Filter space compactifications. Consider a mapping f: X—f(X)
=Y, where X is completely regular and Y is regular. Let X be a
compactification (Hausdorff) of the space X. For y& Y, let C(y) CX
be the collection of all accumulation points in X of the inverse image
of the neighborhood filter of y. Note that f~!(y) CC(y) and f~'()
=C(y) if and only if yE Y —R.

With the above assumptions and terminology, we now have the
following theorem.

THEOREM 3.1. The mapping f has a compactification (X*, f*) with
the property that for each yE& Y, there is a homeomorphism hy of f*=*(y)
onto C(y) which leaves the points of f~'(y) fixed.

We shall construct (X *, f*) and establish via a series of propositions
that it is a compactification of f having the property in the theorem.
In constructing (X*, f*), extensive use of the idea of a filter space
as developed by F. J. Wagner [3] will be made. If X is a collection of
open filters on X which includes the neighborhood filter of every x
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in X, then X can be made into a topological space by taking the col-
lection of sets U= {FEX| UEF, U is an open subset of X} as a
base for open sets in X. The space X is known as a filter space over X.
It is shown in reference [3] that the function e: X —e(X) C X defined
by e(x) = the neighborhood filter of x, is a homeomorphism and e(X)
is a dense subspace of X.

If X is a compactification of the space X, we may consider X to be
a filter space over X by associating with each point in X the trace on
X of its neighborhood filter (Theorem 2 of [3]). For each filter Fin X,
consider @, = { Ff\f—l(W,,)| FEF, W, a neighborhood of y}. Each @,
that does not contain the empty set is a base for a filter on X, which
we shall denote by F,. Note that F, is defined if and only if
FOf~Y(W,) # & for every neighborhood W, of ¥ and every FEF.

To avoid confusion, we shall throughout use the terminology “F is
a filter on X” when F is a collection of subsets of X, and “F is a filter
in X” when F is a member of X.

PRroPOSITION 3.2. For F and G in X, F,=G, if and only if F=G,
and y=z.

ProorF. The “if” part is trivial. Assume F, = G.. The inverse image
of every neighborhood of y is a member of F, and the inverse image
of every neighborhood of z is a member of G., so it follows from the
fact that Y is Hausdorff that y=z. That F=G follows from the fact
that FCF,, GCG., and the Hausdorff property of X.

It is clear that each F, is an open filter and that for F= N,, the
neighborhood filter of x, then F, = N,, where y=f(x). Let X* denote
the filter space consisting of all such F,. Define the function f* from
X *onto Y by setting f*(F,) =9. Thenf*l X =fand X is dense in X*.

ProprosITION 3.3. f* is continuous.

ProoF. Let R be a neighborhood of y =f*(F,) and choose W to be
an open neighborhood of y such that cl(W)CR. Now U=f~Y(W) is a
member of F,, so U*={G,EX*| UEG.} is a neighborhood of F,.
For any G.€ U*, [~ (W)EG., so z=f*(G.)Ecl(W)CR.

ProrosiTioN 3.4. X* is regular.

Proor. Let F, and G. be two distinct points in X*. If ysz, the
existence of disjoint neighborhoods of the two points follows from the
continuity of f* and the Hausdorff property of Y. If F=@G, there are
disjoint open sets U and V in X such that UEF and V&G since X
is Hausdorff. Thus U* and V* are disjoint neighborhoods of F, and
G., respectively.
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Next, let F,& U*, and choose an open FEF and a neighborhood
W, of y so that FMNf~Y(W,)CU. Let M be an open neighborhood of
y such that cl(M)CW,. The space X is regular, so choose an open
VCX so that VEF and cl(V) CF, where V denotes the collection of
all elements in X that have V as a member. Let R= VNf-1(M).
We shall show that R* is a neighborhood of F, such that cl(R*)C U*.

First note that since VEF, we have VNf~Y(M)=REF,, so R* is
indeed a neighborhood of F,. If G.&cl(R*), every open set in G,
meets R, so z&cl(M) CW,. Let W, be a neighborhood of z such that
W.C W,. For every GE G, we have [GNf~Y(W.) | R &, and hence
GNV# for every G in G. This means that GEcl(V)CF, or
FEG. Hence FNf~Y(W,)EGQG,, and UEG, since FNf~Y(W,)CU.

ProprosiTION 3.5. If § is an open filter on X* such that f*(5) con-
verges to some yin Y, then § has an accumulation point.

ProoF. §NX = { ANX| A€} is an open filter base on X since X
is dense in X *. If we consider $N\X to be a filter base on X, it has an
accumulation point FE X. Suppose FNf~Y(W,) = & for some Fin F
and neighborhood W, of y. Choose A4 in F such that f*(4)CW,.
Now FN(ANX)# & by Lemma 3 of reference [3]; but for xEF
MN(ANX), the neighborhood filter N, is a member of 4 and f*(N,)
=f(x) EW,, so f~Y W, )N F# J, a contradiction. Thus FNf~1(W,) #= &
for every F in F and every neighborhood W, of y.

We show that F, is an accumulation point of §. If not, there is an
open UCX such that UEF, and U*NA,= for some 4; in .
Choose F in F and a neighborhood W, of y so that FNf~Y(W,)C U.
Let A, in § be such that f*(4,) CW,, and define 4 =A4:MNA4,. Then
for any x&EA4ANX, it is true that f(x) E W,. Or in other words, ANX
Cf~Y(W,), which contradicts our statement that U*MN\A4; is empty.

It is clear from (2.1) and (2.2) that f* is a compact mapping, so
(X*, f*) is a compactification of f. The next proposition completes
the proof of Theorem 3.1.

ProrosITION 3.6. For each y&Y, there is a homeomorphism h, of
f*=1(y) onto C(y) which leaves the points of f~(y) fixed.

ProoF. Let : X*—X be defined by k(F,)=F. To show that & is
continuous, let U be an open set in X such that UEF=h(F,). Choose
an open set VEF so that cl(V) CU. We know that FCF,, so V*isa
neighborhood of F,. Suppose G.E V*; then VEG,, and VNG = &
for every GE G, which means that GEcl(V) C U. Thus kis continuous.

Foreachy& Y, leth, = h[f*“(y). It follows from (3.2) that %, is one
to one, and thus a homeomorphism since f*~!(y) is compact. That the
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range of &, is C(y) is a consequence of the fact that F, is defined if and
only if every member of F meets the inverse image of every neighbor-
hood of y.

Finally, we show that any compactification (X’, f’) of f with X’
completely regular is a filter space compactification corresponding to
some compactification X of the space X. We have

THEOREM 3.7. Suppose (X', f') is a compactification of [ with X’
completely regular, and let X be a compactification of X', and hence of
X. Then the corresponding filter space compactification (X*, f*) is
equivalent to (X', f').

Proor. We have X CX’'CX, and will consider X (and hence X’)
to be a filter space over X. Note that the filter F on X’ converges to
the point FEX’, so that for any FEX’, we have F,EX*, where
y=f'(F).

Let F, be an element of X *. If we consider F, to be a filter on X’,
it has an accumulation point GE X', since f(Fy) =f'(F,) converges
to y. Any open set in X which is a member of G must meet every
member of F, so it follows that F=G since X is Hausdorff. Thus
f/(F)=y. It now follows that f(F) converges to ¥, so that F,=F.
Thus X*=X’and f*=f".
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