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1. Introduction. A mapping (continuous function)/: X—>f(X)= Y

is compact if it is closed and point inverses are compact. (These

mappings are often called perfect, or proper.) A compact mapping has

the property that the inverse image of any compact set is compact.

This property is sometimes taken as the definition of a compact

mapping, although the two definitions are not equivalent for arbitrary

range F. Exact conditions for their equivalence are given in ref-

erence [6].

A compactification of / is a pair (A*, /*) where A* is a Hausdorff

space containing A as a dense subspace, and/* is a compact mapping

of A* onto F such that/*|A=/. G. T. Whyburn introduced the

notion of a mapping compactification in 1953 when he showed that

every mapping of one locally compact Hausdorff space onto another

is a partial mapping of a compact mapping on a Hausdorff space

[4], [7]. He also noted in reference [7] that a compactification for

any mapping from one completely regular space onto another can

be obtained by restricting the extension/: 0X—+/3Y to/~'(F).

In this paper we study some general properties of mapping com-

pactifications and construct a class of so-called filter space compactifi-

cations of a mapping from a completely regular space onto a regular

space. Each of these compactifications is associated in a natural way

with a compactification of the domain of /. For F locally compact,

we show that the domain A is completely regular if and only if/has a

compactification; and if X is completely regular, every compactifica-

tion of / is a filter space compactification. We shall assume that all

spaces are Hausdorff. Thus in this paper, regular spaces, completely

regular spaces, etc., are Hausdorff.

2. Mapping compactifications. Let R denote the collection of all

points p in Y having the property that there is a filter F on A with

no accumulation point such that/(F) converges to p. The following

result then follows directly from Theorem 1, p. 101, of [l].

Proposition 2.1. The restriction of f to f~l(Y—R) is compact, and

if f is compact, R is empty.
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In case X is regular, we need only consider open filters; that is, those

which have a base consisting of open sets. Specifically, we have

Proposition 2.2. If X is regular, R consists of those points p in Y

having the property that there is an open filter G on X with no accumula-

tion point which is such thatf(G) converges to p.

Proof. Suppose p is in R, F has no accumulation point, and f(F)

converges to p. Let V he the collection of all closed neighborhoods in

X which have a member of F contained in their complement. The

fact that F has no accumulation point guarantees that each x in X

has at least one neighborhood in V.

The collection 0,= {X—Va\ 7„G1)} is a filter base. If A denotes

the filter generated by a, then clearly G = {Af^f-^U)\AEA, Uis a

neighborhood of p} is an open filter having no accumulation point,

and f(G) converges to p.

We shall let 5 denote the singular set of /. (S is the collection of

all p in Y such that in every neighborhood of p there is a compact set

with a noncompact inverse image [2], [5].) It follows easily from the

fact that/ restricted to/_I(F — cl(P)) is compact and the results in

reference [6] that SCcl(P), and that if F is a &-space then

RES = cl(R).

Theorem 2.3. // (X*, /*) is a compactification of f, then

f*(X*-X)=R.

Proof. Let p he in R and suppose F is a filter on X such that/(F)

converges to p and F has no accumulation point in X. f* is compact,

so there is an accumulation point x of F in X* — X, and from the

continuity of/ it follows that/*(x) =p.

For x in X* — X, let N he the neighborhood filter of x. Since X is

dense in X*,F= {N(~\X\ NEN} is a filter on X without an accumu-

lation point in X and is such that/(F) converges tof*(x).

Corollary. // X is locally compact, R is closed. If in addition, Y is

a k-space, then R = S.

Proof. If X is locally compact, X is open in X*. Thusf*(X* — X)

is closed.

A relation ^ is defined on the collection of all compactifications

of / by agreeing that (X2, f2) ^ (Xx, fx) if there is a mapping h of X2

onto Xx which leaves the points of X fixed and is such that f2 =fxh.

If the mapping h can be taken to be a homeomorphism, (Xltfx) and

(X2,f2) are said to be equivalent. It is easy to verify that the relation

^ is a partial order and that (Xx,fx) and (X2,f2) are equivalent if and

only if the relations (Xt, f2) ̂  (Xx, fx) ̂  (Xt, ft) hold.
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In case A and F are locally compact, Whyburn's unified space of

the mapping / provides a compactification (Xw, fw) in which

fv>\ (Xw—X) is a homeomorphism onto R [4]. The next result shows

that any compactification with this property precedes all others with

respect to the partial order 2:. Thus all such compactifications of/

are equivalent.

Theorem 2.4. Suppose the domain of f is locally compact. If (!„,/,)

is a compactification of f such that fw restricted to Xw—X is a homeo-

morphism, then (A*,/*) 2: (Xw,fw)for any compactification (A*,/*) off.

Proof. Define the function h: A*—>A„ by setting h(x) =x for x in

A and h(x) = \f-1f*(x)]l^(Xw-X) for x in X*-X. It is clear that

his a function, that/* =/«,/?, and that h is continuous at all points of

A. To show that h is continuous at a point x in A* — X, let N be the

neighborhood filter of x. Then f*(N) converges to f*(x), and /„ is

compact, so h(N) has at least one accumulation point z. From the

fact that A is open in Xw and A*, and h is the identity on A, it follows

that z can not be in X, so h(N) has exactly one accumulation point

z = h(x) in Xw — X.

Let IF be a neighborhood of z. If every member of h(N) meets the

complement of W, then G= {GC\(X„-W)\ GEh(N)} is a filter on

Xw with no accumulation point, and fw(G) converges to y. This con-

tradicts the fact that/„ is compact. Thus h(N) converges to z = h(x)

and h is continuous.

3. Filter space compactifications. Consider a mapping/: X—*f(A)

= F, where A is completely regular and F is regular. Let A be a

compactification (Hausdorff) of the space A. For yG Y, let C(y)GA

be the collection of all accumulation points in A of the inverse image

of the neighborhood filter of y. Note that f~1(y)EC(y) and f~l(y)

= C(y) if and only if yG Y-R.
With the above assumptions and terminology, we now have the

following theorem.

Theorem 3.1. The mapping f has a compactification (A*, /*) with

the property that for each yEY, there is a homeomorphism hy of /*_1(y)

onto C(y) which leaves the points of f~l(y) fixed.

We shall construct (A*,/*) and establish via a series of propositions

that it is a compactification of/ having the property in the theorem.

In constructing (A*,/*), extensive use of the idea of a filter space

as developed by F. J. Wagner [3] will be made. If A is a collection of

open filters on A which includes the neighborhood filter of every x
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in X, then X can be made into a topological space by taking the col-

lection of sets tJ= {FEX\ UEF, U is an open subset of ZJ as a

base for open sets in X. The space X is known as a filter space over X.

It is shown in reference [3] that the function e: X-^e(X)EX defined

by e(x) = the neighborhood filter of x, is a homeomorphism and e(X)

is a dense subspace of X.

If X is a compactification of the space X, we may consider X to be

a filter space over X by associating with each point in X the trace on

X of its neighborhood filter (Theorem 2 of [3]). For each filter Fin X,

consider «„= { Fr\f~l(Wv)\ FEF, Wy a neighborhood of y}. Each tt„

that does not contain the empty set is a base for a filter on X, which

we shall denote by F„. Note that F„ is defined if and only if

Fr\f~1(Wy)^0 for every neighborhood Wy of y and every FEF.

To avoid confusion, we shall throughout use the terminology "F is

a filter on X" when F is a collection of subsets of X, and "F is a filter

in X" when F is a member of X.

Proposition 3.2. For F and G in X, Fy = Gz if and only if F= G,
and y*=z.

Proof. The "if" part is trivial. Assume Fy = Gz. The inverse image

of every neighborhood of y is a member of F„ and the inverse image

of every neighborhood of 2 is a member of Gz, so it follows from the

fact that F is Hausdorff that y = z. That F=G follows from the fact

that FEFV, GEGZ, and the Hausdorff property of X.

It is clear that each Fy is an open filter and that for F=NX, the

neighborhood filter of x, then FV = NX, where y=f(x). Let X* denote

the filter space consisting of all such F„. Define the function/* from

X* onto Fby setting f*(Fy)=y. Then/*| X =/and X is dense in X*.

Proposition 3.3. f* is continuous.

Proof. Let R he a neighborhood of y=f*(Fy) and choose W to be

an open neighborhood of y such that cl(IF)CP. Now U =/_1(l4v) is a

member of F„, so U*= {GZEX*\ UEGz} is a neighborhood of Fy.

For any G.EU*, f~l(W)EGz, so z=f*(Gz)Ec\(W)ER.

Proposition 3.4. X* is regular.

Proof. Let F„ and G2 be two distinct points in X*. If yy^z, the

existence of disjoint neighborhoods of the two points follows from the

continuity of/* and the Hausdorff property of F. If F=G, there are

disjoint open sets U and V in X such that PGF and FGG since X

is Hausdorff. Thus U* and V* are disjoint neighborhoods of Fy and

Gz, respectively.
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Next, let FVEU*, and choose an open FEF and a neighborhood

Wy of y so that FC\f~1(Wy) E U. Let M be an open neighborhood of

y such that c\(M)EWy. The space A is regular, so choose an open

FCA so that VEF and cl(F) EF, where V denotes the collection of

all elements in A that have V as a member. Let R= VC\f~l(M).

We shall show that A* is a neighborhood of Fy such that cl(A*) C U*.

First note that since VEF, we have VC\f~l(M) =REFy, so R* is

indeed a neighborhood of Fy. If GzEc\(R*), every open set in Gz

meets R, so zGcl(Af)CIF„. Let Wz be a neighborhood of z such that

WZEW„. For every GEG, we have [Gr\f-i(Wz)}C\R^0, and hence

GC\V^0 for every G in G. This means that GGcl(F)GF, or

FEG. Hence Fn/-!(IFZ)GGZ, and UEGZ since Ffy-KWyCf/.

Proposition 3.5. If $ is an open filter on X* such that f*(ff) con-

verges to some y in Y, then ff has an accumulation point.

Proof. ffPtA = {;4nA|^4Gff} is an open filter base on A since A

is dense in A*. If we consider JHI to be a filter base on A, it has an

accumulation point FEX. Suppose FC\f-l(Wy) =0 for some F in F

and neighborhood IF,, of y. Choose A in ff such that f*(A)EWy.

Now Fr\(AC\X)^0 by Lemma 3 of reference [3]; but for xEF

r\(Ar\X), the neighborhood filter 7VX is a member of A and f*(Nx)

=f(x)EWy, sof~l(Wy)r\F^0, a contradiction. Thus FC\f-l(Wy)^0

for every F in F and every neighborhood Wy of y.

We show that Fy is an accumulation point of ff. If not, there is an

open UEX such that UEFy and U*(~\Ax = 0 for some ^4i in ff.

Choose F in F and a neighborhood Wy of y so that FC\f-l(Wy) E U.

Let A2 in ff be such that f*(A2)EWy, and define A =AxC\A2. Then
for any xG-4f\A, it is true that f(x) E Wy. Or in other words, A DI

Ef~1(Wy), which contradicts our statement that U*C\Ax is empty.

It is clear from (2.1) and (2.2) that/* is a compact mapping, so

(A*,/*) is a compactification of/. The next proposition completes

the proof of Theorem 3.1.

Proposition 3.6. For each yEY, there is a homeomorphism hy of

/*_1(y) onto C(y) which leaves the points of f^1(y) fixed.

Proof. Let h: A*->A be defined by h(Fy)=F. To show that h is

continuous, let U be an open set in A such that UEF=h(Fy). Choose

an open set VEF so that cl(F)CC\ We know that FEFy, so V* is a

neighborhood of Fy. Suppose GZEV*; then VEGZ, and VC\G ?*0
for every GEG, which means that G Gcl( V) E U. Thus h is continuous.

For each yG F, let hy = h\f*~1(y). It follows from (3.2) that hy is one

to one, and thus a homeomorphism sincef*~1(y) is compact. That the
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range of hy is C(y) is a consequence of the fact that F„ is defined if and

only if every member of F meets the inverse image of every neighbor-

hood of y.

Finally, we show that any compactification (X', /') of / with X'

completely regular is a filter space compactification corresponding to

some compactification X of the space X. We have

Theorem 3.7. Suppose (X', /') is a compactification of f with X'

completely regular, and let X be a compactification of X', and hence of

X. Then the corresponding filter space compactification (X*, /*) is

equivalent to (X',f).

Proof. We have XEX'EX, and will consider X (and hence X')

to be a filter space over X. Note that the filter F on X' converges to

the point FEX', so that for any FEX', we have FyEX*, where

y=f(F).
Let F„ be an element of X*. If we consider Fy to be a filter on X',

it has an accumulation point GEX', since f(Fv) =f'(Fy) converges

to y. Any open set in X which is a member of G must meet every

member of F, so it follows that F=G since X is Hausdorff. Thus

f'(F)=y. It now follows that/(F) converges to y, so that Fy = F.

Thus X* = X' and/*=/'.
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