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1. Introduction. Let I be a topological space and let Y be a

metric space with metric d. Let/: X—>F be a single valued function

from X into F, and let 5>0. Klee [2] has defined/ to be 5-continuous

if and only if for each xEX there is an open set N(x) containing x

such that d(f(xx),f(x2))<8 for all Xx, x2EN(x).

Further, Klee [2] extended the notion of a fixed point to 5-con-

tinuous functions and defined the proximate fixed point property.

Then Yandl [9] obtained a number of results analogous to the results

known for continuous functions. In particular he showed that the

product of a countable number of chainable continua has the proxi-

mate fixed point property. The purpose of the present paper is to

prove two proximate fixed point theorems for multifunctions.

2. Basic concepts. In the following let F: X^> Fbe a multi-valued

function on a topological space X into a metric space F and let

S>0. If A is a subset of F, let SS(A) = {y\d(y, ^4)<5] and let
Ss(A) = {y\d(y, ^4)^5}, and denote the closure of a set A by A*.

Definitions. (1) The function P is called lower 5-continuous iff for

each open set VE Y the set {xGA^| F(x)r\Ss(V) ^D} is open.

(2) The function F is called upper 6-continuous iff for each closed

set AEY the set {xEX\ F(x)C\S,(A)?*n} is closed.
(3) The function F is called 5-continuous iff it is both upper and

lower 5-continuous.

Remark 1. The definitions given here do not correspond precisely

to the definition given by Klee and used by Yandl, but there is a

close relationship as will be shown below. These definitions were

chosen because they are simple to state and easy to work with,

whereas a more exact carryover of Klee's definition is cumbersome

and presents some technical difficulties.

Remark 2. If Pis a lower semicontinuous, upper semicontinuous,

or continuous multi-valued function on X into F, then given any

5>0, F is lower 5-continuous, upper 5-continuous, or 5-continuous

respectively.

Proposition 1. // P: X—>Y is I. 8—c, if e>0, if xEX and if
yEF(x),   then  there is  an  open  set   N(x)   containing x  such  that
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d(y, F(x'))<h+efor allx'EN(x). Consequently, if Fis I. b — c. for all
5>0, then Fis lower semicontinuous (l.s.c).

Proof. If yEF(x), then St(y) is an open set and the set

{x'\F(x')C\Si(Sl(y))^U}

is the required open set. Now let V be open and let yE VC\F(x). Pick

e such that S2l(y)EV, and let 5 = e. Then there is an open set N(x)

containing x such that d(y, F(x'))<2t. Hence F(x')C\V9£{Ji for all

x'EN(x), and F is l.s.c.

Proposition 2. If F(x) is compact for each xEX, then F u. b—c.

for each S> 0 implies that Fis upper semicontinuous (u.s.c).

Proof. Let A be a closed subset of Y. Since F(x) is compact and A

is closed, we have {x| F(x)C\A ^U} =fti>o{x\ F(x)r\Ss(A)^n}.

Thus, F is u.s.c.

Proposition 3. Let F be u. 8—c, let e>0 and let XoEX. Then there

exists an open set N(x0) containing x0 such that for each xEN(x0) and

each yEF(x), we have d(y, F(x0))<8+e.

Proof. Let y = 8+t and let A = Y\S1(F(x0)). Then

{x\ f(x)ns~,(A) ^n}

is closed, and hence, N(x0) = {x\ F(x)r\Ss(A) = □} is an open set

containing x0. Furthermore, if xEX and yEF(x) such that d(y, F(xo))

S;?7, then F(x)r\A^fJ and so xGA(x0). Consequently if xEN(x0)

and yEF(x), then d(y, F(x0))<b+t.

Remark 3. Propositions 1 and 3 show that the definitions used in

this paper are related to the definition proposed by Klee. On the

other hand, simple examples show that the two concepts are not

equivalent.

3. The proximate fixed point property. The purpose of this section

is to define the notion of the proximate fixed point property and to

obtain generalizations of two fixed point theorems for multi-valued

functions.

Definition. A metric space X is said to have the proximate fixed

point property (p.F.p.p.) for multi-valued functions iff for each

«>0 there is a 5>0 such that for each 5-continuous multi-valued

function F: X>X there is a point xEX such that d(x, F(x))<e.
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Note. One defines the proximate fixed point property for 1. 5—c.

and u. 5 —c. functions and for functions with restrictions of the

image sets in an analogous way.

Proposition 4. If X is compact and has the p. F.p.p. for functions F

such that F(x) is compact for each x, then X has the fixed point property

(F.p.p.) for continuous multi-valued functions F such that F(x) is com-

pact for each xEX.

Proof. By Remark 2 each continuous function is 5-continuous for

each 5>0. Thus, there exists a sequence {x„|re>l} such that for

any «>0 there is an re such that d(xn, F(xn)) <e. Then, since X and

F(x) are compact and F is continuous, there is an x0EX such that

XoEF(x0).

The first theorem is a generalization of theorems of Hamilton [l],

Ward [8], and Yandl [9].

Definition. A metric space X is chainable iff given e>0 there exists

a finite set c\i= { Ux, • • • , Un} of open sets such that: (i) (jc\L = X,

(ii) U*C\U*^U iff \i~j\ ^1, and (iii) d(Uf)<e for all *'.
The proof of Theorem 1 is patterned after the proof given by

Ward [8].

Theorem 1. Each chainable metric continuum has the p.F.p.p.

Proof. Let X he a chainable metric continuum and let t>0 be

given. Let It be a finite collection of open sets satisfying properties

(i), (ii), and (iii). Since U*C\U* = U when \i-j\ >1, d(U*, U*)>0

ii \i-j\> 1. Thus, \et 8 = ^ min {d(U*, U*) \ \ i-j\ > 1}, and let F

be any 5-continuous function. Define the set A by: A = jxGl[ for

some i, xEUi and for all ]<i, F(x)C\Ss(Uj) = □}. Note that A is

closed (since F is 1. 5—c.) and that UxEA. Define the set B by:

B= [xEX\ ior some i,xEUi and ior some j<i, F(x)f~\S S(U*) ?±rj} ■

Since F is u. 5-c, B is closed. If xEX\A, then F(x)r\Ss(Uj)^0

for some j<i, and thus, xEB. Therefore X = A\JB. If P = D, then

for each xE U„, F(x) E Un, and hence, d(x, F(x)) <e. So suppose that

B^FJ. Thus, since X is connected and A, B are closed, there is an

xoEAC\B. Let i he the least index such that x0EUt. Then F(x0)

r\Ss(Uj) = n for all j<i. Note if F(x0)r\Ss(Ut-i)^D, then F(x0)

rW.-^D and we have d(x0, F(x0)))<e. Furthermore, if F(x0)

n(t/AJ[/<+!) =Q, then F(x0)E(j{U*\Ui\j>i + l} =C. Hence, if
j'=*\ d(F(x0), U*')^d(C, E//) = 25. ButxoGB implies that

d(F(x0), U*) S 8

ior some j'Si. Thus, /?(xo)n([/»W/7j+i) j^D- Finally, the above also

implies that XoEUiHUi+x, if F(x0)C\Ui=r2, and so d(x0, F(x0))<t.
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Note. In general a countable (or finite) product of chainable con-

tinua will not have the p.F.p.p. Indeed, Strother [5] has exhib-

ited a continuous multi-valued function on the unit disc into itself

which does not have a fixed point.

The second theorem is a generalization of a theorem of Plunkett's

[4] on dendrites. Recall that a dendrite is a metric continuum such

that any two points can be separated by the omission of a third

point. We shall use the partial order structure of a dendrite that was

developed by Ward [6]. Let A be a dendrite and let e by any point of

X. Define the partial order P by: P={(x, y)EXXX\x = e, x sep-

arates e and y, or x = y}. Then P is a partial order with minimal ele-

ment e, P=P* in the product topology on AX A, and the sets

xP= {y\ (x, y)EP} and Px= {y\ (y, x)EP} are closed. Further, the

sets xP\x are open and the sets PxC\Py are compact, nonempty,

connected chains. We shall write x^y iff (x, y)EP- Also, results of

Nachbin [3] and Ward [6], [7] show that each chain in X has both a

supremum and an infimum and that each closed set has minimal and

maximal elements.

Theorem 2. Each dendrite has the p.F.p.p.

Proof. Let A be a dendrite and let e>0. Let eEX, and let P be

the above partial order with minimal element e. Since X is uniformly

locally connected, for each ?7>0 there is a 5,>0 such that if d(x, y)

<o„ then x and y are contained in a connected set with diameter less

than ij. Let 77 = e, let 5 = o,/2 and let F be a 5-continuous function on X

into X. If eEF(e), we are done. Thus, the set {x\ F(x)C\xP?±[~\} is

nonempty. Let C be a maximal chain in {x| F(x)r\xP^\Z\ }, and let

Xo = sup C. We claim that XoGC. Let U be a convex open set con-

taining Xo such that d(U)<5, and set A =UJ F(x)fWl xECC\U}.

Then, since F is u. 5—c, x0G {x| F(x)C\Si(A*) ^d); thus, let

XiG-fXxo) and x2G^4* such that d(xx, x2)^5. First note that if

x2EU*, there is an x'EU and x"EF(x') such that d(x', x")<28,

and thus, d(x', F(x')) <t. On the other hand, if x2G U* and if x0<x2,

there is an open set V such that x2EV and if x'EV, x"EU, then

x"<x', but this contradicts the definitions of A and C. Then if

x0<Xi, x0 separate Xi and x2, but by the uniformly local connected-

ness property Xi and x2 are contained in a connected set of diameter

less than t which implies that d(x0, F(xo))<e. Consequently we con-

clude that XoGC Now let xi be a minimal element of the closure of

xoPr\F(xo) and let V = xxP\xx- Since F is 1. 5—c, the set

{x\F(x)r\Ss(V)^n}
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is open; thus, there is an element x2 such that x0<x2<xi and such

that F(x2)r\Ss(V)^\J- Let x3EF(x2)r\S6(V). Then, since C was a

maximal chain, x2<X3, and thus, x2 separates X3 and some point x\

of V with d(xx, X3) <S. This implies that X3 and x' are contained in a

connected set with diameter less than t, but X2 must also be in this

set, which implies that d(x2, F(x2))<t. So, in any case, we have a

point xEX such that d(x, F(x))<t, and the theorem is proved.

Finally, combining Proposition 4, Theorem 2, and a result of

Plunkett's theorem [4], we get

Corollary. A Peano space has the p.F.p.p. iff it is a dendrite.
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