The main result of this paper is the following theorem.

Theorem. Let M^n denote a nonbounded combinatorial manifold rectilinearly imbedded in some Euclidean space. If M^n possesses a transverse field, then M^n has a normal microbundle.

We assume that the reader is familiar with the theory of piecewise linear microbundles, which was developed by J. Milnor (see [5] or [6]), as well as familiarity with the theory of C^1-complexes, developed by J. H. C. Whitehead, (see [7] or [10]).

0. **Convention.** Throughout this paper M^n will denote a nonbounded combinatorial manifold rectilinearly imbedded in some Euclidean space.

1. **Definition.** Let s denote a simplex (open) of M. By $P(s)$ we will denote the subset (possibly empty) in $G_{n,p}$ (the Grassmannian manifold of all p-planes through the origin in R^{n+p}) consisting of all p-planes P, such that, if H is the orthogonal n-plane to P in R^{n+p}, then the orthogonal projection $q: R^{n+p} \rightarrow H$, restricted to $St(s, M)^-$ (the closed star of s in M) is a homeomorphism carrying $St(s, M)^-$ onto an open set in H. If the p-plane P belongs to $P(s)$, then P is said to be transversal to M at m, where m is any point of s. A continuous map $g: M \rightarrow G_{n,p}$ is a transverse field, if the set $g(s)$ is contained in the set $P(s)$, for every simplex s of M.

2. **Remark.** If the simplex t is a face of the simplex s, then since $St(t, M)^-$ is contained in $St(s, M)^-$, we have the fact that the set $P(t)$ is contained in the set $P(s)$.

3. **Lemma.** Let $g: M^n \rightarrow G_{n,p}$ be a transverse field. Without loss of generality we may assume that the map, g, is piecewise smooth.

Proof. Suppose we have a continuous transverse field, $h: M^n \rightarrow G_{n,p}$. By Remark 2 we see that $h(s)$ is contained in $P(s)$. The reader can verify that the sets $P(s)$ are open in $G_{n,p}$ (or see Proposition 3.7 of [9]). Thus, since $h(s)$ is compact, we see that there exists a positive continuous function δ mapping M to the positive reals, such that, if

Received by the editors September 16, 1968 and, in revised form, December 13, 1968 and April 11, 1969.
4. **Lemma.** Given a transverse field $g: M \rightarrow G_{n,p}$. Let N denote the subset of $M \times R^{n+p}$ consisting of pairs (x, v) such that the vector v belongs to the p-plane $g(x)$. Then N is a vector bundle with base M, which we shall call a normal bundle of the imbedding of M in R^{n+p}.

Proof. Consider the p-dimensional vector bundle G consisting of pairs (P, v) in the space $G_{n,p} \times R^{n+p}$ such that the vector v belongs to the p-plane P. The set N then, is just the bundle induced by the map g.

5. **Remark.** Let $g: M \rightarrow G_{n,p}$ be a piecewise smooth transverse field. (This is no loss in generality by Lemma 3.) The map g induces a map $f: N \rightarrow R^{n+p}$ defined by $f(x, v) = x + v$. Let m be a point of M, then since a vector bundle over a contractible set is trivial, let $h: St(m, M)^{-} \times R^{p} \rightarrow N$ denote a trivialization of N over $St(m, M)^{-}$. The map h may be chosen such that the map $k: St(m, M)^{-} \times R^{p} \rightarrow R^{n+p}$ induced by f is piecewise smooth. (We give $St(m, M)^{-} \times R^{p}$ a simplicial structure.) Let e_1, \ldots, e_p denote an orthonormal basis of R^{p}, and set $h(x, e_i) = (x, v_i(x))$, a point of N. Then for a point w in R^{p} such that $w = \sum c_i e_i$, we have that $k(x, w) = x + \sum c_i v_i(x)$. Finally we define a new map $k': St(m, M)^{-} \times R^{p} \rightarrow R^{n+p}$ by $k'(x, w) = x + \sum c_i v_i(m)$.

6. **Lemma.** The map $k': St(m, M)^{-} \times R^{p} \rightarrow R^{n+p}$ defined in the previous remark is a piecewise smooth imbedding.

Proof. Let $X = St(m, M)^{-} \times R^{p}$ and $b = (x, w)$. We must prove that:

1. $dk'_b : St(b, X)^{-} \rightarrow R^{n+p}$ is one-to-one for each point b of X,
2. k' is a homeomorphism.

Proof of (1). Recall that $dk'_b (z) = Dk'(b) \cdot (z - b)$ (where $Dk'(b)$ is the Jacobian of the map k' with respect to a simplex containing b. Though the Jacobian depends upon the simplex chosen, the map dk'_b does not). To prove that the map dk'_b is one-to-one, it is obviously sufficient to prove that the Jacobian $Dk'(b)$ is nonsingular. Now the $n+p \times n+p$ matrix $Dk'(b) = (C; v_1(m); \cdots; v_p(m))$, where
the \(n \) columns of the \(n+p \times n \) matrix \(C \) span the \(n \)-plane determined by an \(n \)-simplex in \(\text{St}(m, M)^- \) containing the point \(x \). Since the vectors \(v_i(m), i = 1, \ldots, p \) span the \(p \)-plane \(g(m) \) and are not in the \(n \)-plane determined by any simplex of \(\text{St}(m, M)^- \), the Jacobian \(Dk'(b) \) is nonsingular.

Proof of (2). It is easily seen that it suffices to prove that the map \(k' \) is one-to-one. If \(k' \) is not one-to-one, then there exist pairs \((x, w) \) and \((y, u) \), where \(w = \sum c_i e_i \) and \(u = \sum d_i e_i \), such that \(x + \sum c_i v_i(m) = y + \sum d_i v_i(m) \). This implies that the vector \(x - y \) belongs to the \(p \)-plane \(g(m) \), and hence that the projection of \(\text{St}(m, M)^- \) to the orthogonal \(n \)-plane to \(g(m) \) is not one-to-one. This contradicts the choice of \(g(m) \).

7. **Lemma.** Given a point \(m \) of \(M \), there exists a finite subcomplex \(Y \) (depending on the point \(m \)) of some subdivision of \(\text{St}(m, M)^- \times \mathbb{R}^p \), which contains a neighborhood of \((m, 0) \) on which the map \(k \) (defined in Remark 5) is a piecewise smooth imbedding.

Proof. Let \(Z \) be a finite subcomplex of \(\text{St}(m, M)^- \times \mathbb{R}^p \) consisting of pairs \((x, w) \) such that \(\|w\| \leq 1 \). By Theorem 8.8 of [7], and the previous lemma, there is a \(\delta > 0 \), such that any \(\delta \)-approximation to the map \(k' \) is a piecewise smooth imbedding, for any subcomplex \(Y \) contained in an arbitrary subdivision of \(Z \). To insure that the map \(k \) is the desired \(\delta \)-approximation, we choose \(Y \) as follows. First, for \(w = \sum c_i e_i \) in \(\mathbb{R}^p \), let \(w(x) = \sum c_i v_i(x) \) in \(\mathbb{R}^{n+p} \). Now we have that \(\|k(x, w) - k'(x, w)\| = \|w(x) - w(m)\| \). Thus on \(Z \), since \(\|w\| \leq 1 \), we may choose the point \(x \) sufficiently close to \(m \), to insure that \(\|w(x) - w(m)\| < \delta \). We next wish to choose \(b = (x, w) \) sufficiently close to \((m, 0) \) so that \(\|Dk_b(z) - Dk'_b(z)\| < \delta \|z - b\| \), or equivalently so that \(\|Dk(x, w) - Dk'(x, w)\| < c \delta \). (The norm of a matrix is the absolute value of its maximum entry; \(c = (n+p)^{3/2} \).

Now \(Dk(x, w) = (C + c_1 B_1(x) + \cdots + c_p B_p(x); v_1(x); \cdots; v_p(x)) \) where the \(n \) columns of the \(n+p \times n \) matrix \(C \) span the \(n \)-plane determined by an \(n \)-simplex in \(\text{St}(m, M)^- \) containing \(x \), and the entries of the \(n+p \times n \) matrices \(B_i(x) \) are bounded. Since \(Dk'(x, w) = (C; v_1(m); \cdots; v_p(m)) \) we have that \(\|Dk(x, w) - Dk'(x, w)\| = \|(c_1 B_1(x) + \cdots + c_p B_p(x); v_1(x) - v_1(m); \cdots; v_p(x) - v_p(m))\| \). Thus choose \(\|w\| \) small enough, and \(x \) sufficiently close to \(m \) to insure the desired inequality. (Of course the Jacobians chosen depend upon the \(n+p \) simplex chosen to contain the point \(x, w \), but there are only a finite number of such simplices.) Let \(U \) be the neighborhood of \((m, 0) \) so determined to insure the above inequalities. Subdivide the complex \(Z \) sufficiently fine to obtain the desired complex \(Y \) contained in \(U \).
8. **Corollary.** There is a neighborhood of the zero section of the normal bundle \(N \) of \(M \) on which the map \(f: N \to \mathbb{R}^{n+p} \) induced by the piecewise smooth transverse field \(g: M \to G_{n+p} \) is a homeomorphism which maps this neighborhood onto an open subset of \(\mathbb{R}^{n+p} \).

Proof. By Lemma 5.7 of [7], it is sufficient to prove that each point \((m, 0)\) in the zero section of \(N \) has a neighborhood which \(f \) maps homeomorphically onto an open set of \(\mathbb{R}^{n+p} \). But this holds by Lemma 7, the desired neighborhood being the interior of the complex \(Y \). The image is open, for if \(m \) belongs to the simplex \(s \), the fact that \(P(s) \) is nonempty implies that \(St(m, M) \times R^p \), which equals \(St(s, M) \times R^p \). is homeomorphic with a subset of Euclidean \(n+p \) space. Thus Brouwer's theorem on the invariance of domain [3] implies that the image is open.

Let \(V \) denote the neighborhood of the zero section of the normal bundle \(N \) which by the previous corollary, \(f \) maps homeomorphically onto an open set \(f(V) \) in \(\mathbb{R}^{n+p} \). We shall give \(f(V) \) a microbundle structure so that it is a normal microbundle of \(M \). In order to do this we need the result that every vector bundle has a microbundle structure (see [4] or [8]). In fact, we use not only the result, but also the proof of that result as presented in [8].

9. **Theorem.** Let \(M^n \) denote a nonbounded combinatorial manifold rectilinearly imbedded in some Euclidean space. If \(M^n \) possesses a transverse field, then \(M^n \) has a normal microbundle.

Proof. Let \(e: K \to N \) be the triangulation of the normal bundle \(N \) given in [8]. The simplicial complex \(K \) is thus a microbundle over \(M \). Let \(L = e^{-1}(V) \). According to [1, p. 143] we may choose a rectilinear triangulation of \(L \) such that the inclusion map of \(L \) into \(K \) is piecewise linear. The map \(fe: L \to \mathbb{R}^{n+p} \) is a piecewise smooth imbedding. This is due to the fact that in constructing the triangulation \((e, K)\) of the normal bundle \(N \), we may, as in [8], start with the piecewise smooth imbeddings \(h: St(m, M) \times R^p \to N \), where \(m \) is a vertex of \(M \). The maps \(h \) are then changed slightly to maps \(h' \) which we choose sufficiently close to the maps \(h \) to insure that the map \(fe \), which locally is the map \(fh' \), is a piecewise smooth imbedding. (We leave the details to the reader, noting however, that for a detailed proof, Lemma 7 is essential.) Now let \(d: L \to \mathbb{R}^{n+p} \) denote a piecewise linear approximation to the map \(fe \), sufficiently close to insure that it is a piecewise smooth imbedding, and that \(d(L) = fe(L) = f(V) \), an open set in \(\mathbb{R}^{n+p} \). To show that \(d(L) \) is a microbundle with base \(M \), it is sufficient to show that \(L \) is a microbundle with base \(M \). But any open neighborhood of the zero section of a microbundle is a microbundle over the
base. (In the definition of a microbundle we may replace R^n by any
open ball about the origin, since the two are piecewise linearly homeo-
morphic.) Thus $d(L)$ is a normal microbundle for M, the piecewise
linear map $j: d(L) \to M$ is that induced by the piecewise linear projection $K \to M$.

We now prove a corollary to this theorem. Since this corollary is
independent of the global codimension of the imbedding of M it differs
from results of A. Haefliger and C. T. C. Wall [2].

10. **Definition.** The imbedding of M^n in R^{n+p} is *locally normal* if for
each vertex m of M the set $P(m)$ is nonempty. Hence by Remark 2
the set $P(s)$ is nonempty for each simplex s.

11. **Definition.** The imbedding of M^n in R^{n+p} is of *local codimen-
sion k* if for each vertex m of M there is an $n+k$ plane J (depending
on m) such that $St(m, M)$ is contained in some translation of J. (This
suggestive terminology of local codimension is due to H. S. Davis.)

12. **Corollary to Theorem 9.** Let M^n denote a nonbounded combi-
natorial manifold rectilinearly imbedded in some Euclidean space. If
the imbedding is locally normal and of local codimension 1, then M^n
possesses a normal microbundle.

Proof. The principal result of [9, Theorem 1.8], states that the
hypothesis implies that M^n has a transverse field. Hence by Theorem
9, M^n possesses a normal microbundle.

References

2. A. Haefliger and C. T. C. Wall, *Piecewise linear bundles in the stable range*,
3. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Univ. Press,
 Princeton, N. J., 1941.
 357–388.
5. J. Milnor, *Microbundles and differentiable structures*, (mimeographed notes),

Temple University