Tameness implied by extending a homeomorphism to a point
HTML articles powered by AMS MathViewer
- by L. D. Loveland
- Proc. Amer. Math. Soc. 23 (1969), 287-293
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250282-7
- PDF | Request permission
References
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465β483. MR 87090
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583β590. MR 146811, DOI 10.2307/2372864
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80β97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2
- C. E. Burgess, Criteria for a $2$-sphere in $S^{3}$ to be tame modulo two points, Michigan Math. J. 14 (1967), 321β330. MR 216481
- P. H. Doyle and J. G. Hocking, Special $n$-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965), 133β135. MR 175102, DOI 10.1090/S0002-9939-1965-0175102-7
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408
- David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459β476. MR 160193, DOI 10.2307/2373136
- L. D. Loveland, Tame subsets of spheres in $E^{3}$, Pacific J. Math. 19 (1966), 489β517. MR 225309
- L. D. Loveland, Conditions implying that a $2$-sphere is almost tame, Trans. Amer. Math. Soc. 131 (1968), 170β181. MR 224074, DOI 10.1090/S0002-9947-1968-0224074-2
- L. D. Loveland, Piercing points of crumpled cubes, Trans. Amer. Math. Soc. 143 (1969), 145β152. MR 247619, DOI 10.1090/S0002-9947-1969-0247619-6
- L. D. Loveland, Sufficient conditions for a closed set to lie on the boundary of a $3$-cell, Proc. Amer. Math. Soc. 19 (1968), 649β652. MR 227961, DOI 10.1090/S0002-9939-1968-0227961-X
- Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147β151. MR 190914
- D. R. McMillan Jr., Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153β157. MR 220266, DOI 10.1090/S0002-9939-1968-0220266-2
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 23 (1969), 287-293
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250282-7
- MathSciNet review: 0250282