ON A THEOREM OF GOFFMAN AND NEUGEBAUER

A. P. BAINSAB

1. Suppose that a function f is defined in an open interval of which $I_0 = [a, b]$ is a closed subinterval. In this paper we prove Theorem 2'1 and Theorem 3'2 as two generalizations of the following theorem due to C. Goffman and C. J. Neugebauer [1].

Theorem 1'1. Suppose that (i) f has an approximate derivative f'_a in I_0, and
(ii) $f'_a(x) \geq 0$ for all x in I_0. Then f is monotone increasing in I_0.

For definitions and notations used, please see S. Saks [3, p. 220]. Unilateral approximate semicontinuity of f is defined in a natural way.

2. **Theorem 2'1.** If (i) f is approximately upper semicontinuous (a.u.s.c.) on the left, and approximately lower semicontinuous (a.l.s.c.) on the right at each point of I_0, and
(ii) $\text{Int}\{f(E)\} = \emptyset$, where $E = \{x: f'_a(x) \leq 0\}$, then f is monotone increasing in I_0.

Proof. Let there exist two points c, d in I_0, with $c < d$, such that $f(c) > f(d)$. We seek a contradiction. Since $\text{Int}\{f(E)\} = \emptyset$, $f(E)$ does not contain an interval, and, therefore, we can find a number η such that $f(c) > \eta > f(d)$ and

\[
\eta \in f(E).
\]

We now construct a point ξ in E such that $\eta = f(\xi)$. This will be the desired contradiction. Let $G = \{x: f(x) \geq \eta\}$. Then $c \in G$. Since f is a.l.s.c. on the right at c, it follows that the set $\{x: f(x) > \eta\}$, and hence G has right-density unity at c. Therefore, we can find a point x_1 in G, with $x_1 > c$, such that

\[
\frac{\mu\{G \cap (c, x_1]\}}{x_1 - c} \geq \frac{1}{2}.
\]

Now we adopt a technique due to Goffman and Neugebäer [1], and proceed as follows.

Received by the editors March 16, 1969.
Let \(\mathcal{C} \) denote the family of all subsets \(H \) of \(G \) having the following property: If \(x_1, x_2 \subseteq H \), and \(x_1 < x_2 \), then
\[
\frac{\mu \{ G \cap (x_1, x_2) \}}{x_2 - x_1} \geq \frac{1}{2}.
\]

\(\mathcal{C} \) is not empty, since from (2'2) it is evident that \(H = \{ c, x_1 \} \) belongs to \(\mathcal{C} \). We now partially order \(\mathcal{C} \) by set-inclusion. It is easily verified that every chain in \(\mathcal{C} \) has an upper bound in \(\mathcal{C} \). By Zorn’s Lemma, we conclude that \(\mathcal{C} \) has a maximal member \(H_0 \), say. Let
\[
(2'4) \quad \xi = \sup \{ x : x \subseteq H_0 \}.
\]

If \(x \) belongs to \(H_0 \), and if \(x < \xi \), we shall show that
\[
(2'5) \quad \frac{\mu \{ G \cap (x, \xi) \}}{\xi - x} \geq \frac{1}{2}.
\]

From (2'4) it follows that we can find a sequence \(\{ x_n \} \) of points of \(H_0 \) and that \(x < x_n \leq \xi \), and \(x_n \rightarrow \xi \). From (2'3) we have
\[
\frac{\mu \{ G \cap (x, x_n) \}}{x_n - x} \geq \frac{1}{2}.
\]

Taking the limit as \(n \rightarrow \infty \), we have
\[
\frac{\mu \{ G \cap (x, \xi) \}}{\xi - x} \geq \frac{1}{2}.
\]

Thus (2'5) has been established. Suppose that \(\xi \in H_0 \). Then (2'5) implies that \(G \) has no zero left-density at \(\xi \). Since \(G = \{ x : f(x) \geq \eta \} \) and since \(f \) is a.u.s.c. on the left at \(\xi \), it follows easily that \(\eta \leq f(\xi) \). If \(\xi \in H_0 \), then \(\xi \in G \) and again \(\eta \leq f(\xi) \). Suppose that \(\eta < f(\xi) \) then since \(f \) is a.l.s.c. on the right at \(\xi \), we conclude that \(G = \{ x : f(x) \geq \eta \} \) has right density 1 at \(\xi \). So, we choose \(x \in G \) such that \(x > \xi \), and
\[
\frac{\mu \{ G \cap (\xi, x) \}}{x - \xi} \geq \frac{1}{2}.
\]

Since \(H_0 \) is maximal w.r.t. the property (2'3), and \(x \in H_0 \), there exists \(h_0 \in H_0 \) such that
\[
(2'6) \quad \frac{\mu \{ G \cap (h_0, x) \}}{x - h_0} < \frac{1}{2}.
\]

Clearly, \(h_0 < \xi \). From (2'5) we have
\[\mu \left\{ G \cap (h_0, \xi) \right\} = \frac{1}{2}. \]

Then we have
\[
\frac{\mu \left\{ G \cap (h_0, x) \right\}}{x - h_0} = \frac{\mu \left\{ G \cap (h_0, \xi) \right\} + \mu \left\{ G \cap (\xi, x) \right\}}{x - h_0} \geq \frac{1}{2}.
\]

This contradicts (2'6), and we conclude that
\[(2'7) \quad \eta = f(\xi). \]

Finally we show that \(\xi \in E \). In fact,
\[(2'8) \quad f_{\text{ap}}^+(\xi) = \liminf_{x \to \xi^+} \frac{f(x) - f(\xi)}{x - \xi}. \]

Using (2'7) we observe that
\[(2'9) \quad \left\{ x : x > \xi, \frac{f(x) - f(\xi)}{x - \xi} > 0 \right\} \subseteq G. \]

Since \(G \) has no unit right-density at \(\xi \) (by the above argument), neither has the set on r.h.s. of (2'9). Now (2'8) shows immediately that \(f_{\text{ap}}^+(\xi) \leq 0 \), i.e. \(\xi \in E \). We have arrived at the final contradiction, and the proof of the theorem is complete.

3. Theorem 3'1. Suppose that (i) \(f \) is a.u.s.c. on the left everywhere in \(I_0 \), and
(ii) \(f_{\text{ap}}^+(x) \geq 0 \) for all \(x \) in \(I_0 \). Then \(f \) is monotone increasing in \(I_0 \).

Proof. Let \(x_1 \) and \(x_2 \) be two points in \(I_0 \) with \(x_1 < x_2 \). We shall show that \(f(x_2) \geq f(x_1) \). Without loss of generality we assume that \(x_1 = a \) and \(x_2 = b \). Let \(\epsilon \), with \(\epsilon > 0 \), be given. Consider the set \(G^* = \left\{ x : f(x) - f(a) \geq -\epsilon(x - a) \right\} \). Now we construct the point \(\xi^* \) with the help of the set \(G^* \) exactly in the same way as we construct the point \(\xi \) in Theorem 2'1. It is also established as in Theorem 2'1 that \(G^* \) has no zero left-density at \(\xi^* \). Since \(f \) is a.u.s.c on the left at \(\xi^* \), it follows easily that \(\xi^* \in G^* \). Clearly \(\xi^* \leq b \). Suppose that \(\xi^* < b \). Since \(f_{\text{ap}}^+(\xi) \geq 0 \), we can find \(x \in G^* \), with \(x > \xi^* \), such that
\[\mu \left\{ G^* \cap (\xi^*, x) \right\} = \frac{1}{2}. \]
Now we offer a contradiction argument similar to that which has been used to established (2'7) in Theorem 2'1. We thus conclude that $\xi^* = b$. This gives, since $\xi^* \in G^*$, $f(b) - f(a) \geq -\epsilon(b - a)$. Since ϵ is arbitrary, we have $f(b) \geq f(a)$. This completes the proof. The following theorem is a generalization of Theorem 3'1.

Theorem 3'2. If (i) f is a.u.s.c on the left everywhere in I_0,
(ii) $\int f^+(x) \geq 0$ almost everywhere in I_0, and
(iii) $f^+(x) > -\infty$ everywhere in I_0, then f is monotone increasing in I_0.

Proof. Let $E = \{x: f^+(x) < 0\}$. By hypothesis (ii) $\mu(E) = 0$. By a theorem [4, p. 214] there is a continuous increasing function σ in I_0 such that $\sigma'(x) = +\infty$ for $x \in E$. Let ϵ, with $\epsilon > 0$, be given. Consider the function ψ defined on I_0 by $\psi(x) = f(x) + \epsilon \sigma(x)$. Then we have the following:

(i) ψ is a.u.s.c on the left everywhere in I_0,
(ii) $\int \psi^+(x) \geq f^+(x) + \epsilon \sigma^+(x) \geq 0$ for all x in I_0. Hence, by Theorem 3'1 ψ is monotone increasing in I_0. Since ϵ is arbitrary, we conclude that f is monotone increasing in I_0. The proof is complete.

We wish to point out hypothesis (iii) in Theorem 3'2 is not redundant. The following example illustrates this.

Let $$f(x) = \begin{cases} 2x & \text{if } 0 \leq x \leq 1 \\ 1 & \text{if } 1 < x \leq 2. \end{cases}$$

f satisfies all the conditions of Theorem 3'2 except at $x = 1$, where $f^+(x) = -\infty$. f is not monotone increasing in $[0, 2]$.

4. Referring to Theorem 2'1 we want to estimate how large the exceptional set $\{x: f^+(x) \leq 0\}$ may be without making the theorem false. In this connection we recall the following theorem.

Theorem 4'1 [2, p. 199]. Suppose that f is a measurable function in I_0. Let

(i) $S = \{x: f^+(x) \text{ exists, and is finite}\}$,
and

(ii) $T = \{x: \text{all four approximate derivates are infinite at } x\}$. Then $\mu \{I_0 \setminus (S \cup T)\} = 0$.

As an analogue to this we propose the following theorem.
Theorem 4.2. Let f be a measurable function on I_0 such that
(i) $E_1 = \{ x : f'_{ap}(x) \exists \text{ and } \neq 0 \}$, and
(ii) $E_2 = \{ x : \text{all four approximate derivates are infinite at } x \}$, then
$\mu \left[f \left(I_0 \setminus (E_1 \cup E_2) \right) \right] = 0$.

We need the following lemmas.

Lemma 4.1. Let f be a measurable function, and λ be a real number. Let $E = \{ x : f'_{ap}(x) = \lambda \}$. Then

$$\mu \{ f(E) \} \leq |\lambda| \mu(E).$$

Proof. By a theorem of S. Saks [3, p. 239], we can write $E = \bigcup_{n=1}^{\infty} E_n$ where f is absolutely continuous on each E_n ($n = 1, 2, \ldots$). The sets E_n may be taken to be pairwise disjoint. Since f is absolutely continuous on E_n, it satisfies Lusin's (N)-condition on E_n [3, p. 225], and it is of bounded variation on E_n ($n = 1, 2, \ldots$). Therefore, by a lemma of S. Saks [3, p. 221] there is a function g_n which is of bounded variation in I_0 such that $f(x) = g_n(x)$ for $x \in E_n$. Clearly, $g_n'(x) = f'_{ap}(x) = \lambda$ whenever $x \in E_n \setminus B_n$, where B_n is a subset of E_n with $\mu(B_n) = 0$. Since f satisfies Lusin's (N)-condition over E_n, we have

$$\mu \{ f(B_n) \} = 0. \quad (4.1)$$

Using a known result [3, p. 227] we have

$$\mu \{ f(E_n \setminus B_n) \} = \mu \{ g_n(E_n \setminus B_n) \} \leq \int_{E_n \setminus B_n} |g_n'(x)| \, dx = |\lambda| \mu(E_n \setminus B_n).$$

From (4.1) we deduce $\mu \{ f(E_n) \} \leq |\lambda| \mu(E_n)$. Since $E = \bigcup_{n=1}^{\infty} E_n$, and E_n are pairwise disjoint, we have

$$\mu \{ f(E) \} \leq \sum_{n=1}^{\infty} \mu \{ f(E_n) \} \leq |\lambda| \sum_{n=1}^{\infty} \mu(E_n) = |\lambda| \mu(E).$$

Lemma 4.2. Let f be a measurable function on I_0 and let $E' = \{ x : \text{at least one approximate derivate is finite at } x \}$. Then f satisfies Lusin's (N)-condition on E'.

This lemma is in S. Saks [3, pp. 290–292].

Proof of Theorem 4.2. Let $E_3 = \{ x : f'_{ap}(x) \exists \text{ and } = 0 \}$, and $E_4 = \{ x : f'_{ip}(x) \text{ does not exist, and at least one of the four approximate derivates is finite at } x \}$. Clearly $I_0 \setminus (E_1 \cup E_2) \subseteq E_3 \cup E_4$. Hence,
\((4'2) \) \[\mu\{f(I_0 \setminus (E_1 \cup E_2))\} \leq \mu\{f(E_3)\} + \mu\{f(E_4)\}. \]

By Lemma 4'1

\((4'3) \) \[\mu\{f(E_3)\} = 0. \]

According to Theorem 4'1 \(E_4 \subseteq I_0 \setminus (S \cup T) \), and hence \(\mu(E_4) = 0 \).

Using Lemma 4'2 we have

\((4'4) \) \[\mu\{f(E_4)\} = 0. \]

From \((4'2), (4'3)\) and \((4'4) \) we have \(\mu\{f(I_0 \setminus (E_1 \cup E_2))\} = 0 \).

Theorem 4'3. Suppose that \(f \) is a measurable function on \(I_0 \). Let

(i) \(f \) be a.u.s.c. on the left and a.l.s.c. on the right everywhere in \(I_0 \),
(ii) \(P = \{ x: -\infty < f_{ap}(x) < 0 \} \), and \(\mu(P) = 0 \), and
(iii) \(Q = \{ x: \text{all four approximate derivates are infinite with } f_{ap}(x) = -\infty \}, \text{and } Q \text{ be countable} \). Then \(f \) is monotone increasing in \(I_0 \).

Proof. Let \(H = \{ x: f_{ap}(x) \leq 0 \} \). Then we have

\[H \setminus \{ I_0 \setminus (E_1 \cup E_2) \} = H \cap (E_1 \cup E_2) = (H \cap E_1) \cup (H \cap E_2) \subseteq P \cup Q. \]

Now

\[\mu\{f(H)\} \leq \mu\{f(H \setminus (I_0 \setminus (E_1 \cup E_2)))\} + \mu\{f(I_0 \setminus (E_1 \cup E_2))\} \]

by Theorem 4'2. Thus

\((4'5) \) \[\mu\{f(H)\} \leq \mu\{f(P)\} + \mu\{f(Q)\}. \]

By hypothesis (ii), \(\mu(P) = 0 \) and by Lemma 4'2

\((4'6) \) \[\mu\{f(P)\} = 0. \]

Let us suppose that \(\mu\{f(Q)\} > 0 \). Then the cardinality of \(Q \) must be equal to that of the continuum, and hence \(Q \) is uncountable. This contradicts hypothesis (iii). Hence we conclude that

\((4'7) \) \[\mu\{f(Q)\} = 0. \]

From \((4'5), (4'6) \) and \((4'7) \) we obtain \(\mu\{f(H)\} = 0 \). Therefore \(\text{Int}\{f(H)\} = \emptyset \). An application of Theorem 2'1 now completes the proof.
References

Burdwan University, India