A note on a functional inequality
HTML articles powered by AMS MathViewer
- by H. E. Gollwitzer
- Proc. Amer. Math. Soc. 23 (1969), 642-647
- DOI: https://doi.org/10.1090/S0002-9939-1969-0247016-9
- PDF | Request permission
References
- S. C. Chu and F. T. Metcalf, On Gronwall’s inequality, Proc. Amer. Math. Soc. 18 (1967), 439–440. MR 212529, DOI 10.1090/S0002-9939-1967-0212529-0
- G. Stephen Jones, Fundamental inequalities for discrete and discontinuous functional equations, J. Soc. Indust. Appl. Math. 12 (1964), 43–57. MR 162069
- C. E. Langenhop, Bounds on the norm of a solution of a general differential equation, Proc. Amer. Math. Soc. 11 (1960), 795–799. MR 121522, DOI 10.1090/S0002-9939-1960-0121522-1
- D. Willett, Nonlinear vector integral equations as contraction mappings, Arch. Rational Mech. Anal. 15 (1964), 79–86. MR 159200, DOI 10.1007/BF00257405
- D. Willett, A linear generalization of Gronwall’s inequality, Proc. Amer. Math. Soc. 16 (1965), 774–778. MR 181726, DOI 10.1090/S0002-9939-1965-0181726-3
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 23 (1969), 642-647
- MSC: Primary 26.70; Secondary 34.00
- DOI: https://doi.org/10.1090/S0002-9939-1969-0247016-9
- MathSciNet review: 0247016