A PRODUCT INTEGRAL REPRESENTATION FOR A GRONWALL INEQUALITY

BURRELL W. HELTON

1. Introduction. This paper shows that if G and H are functions from $R \times R$ to R such that $1 - G \geq c > 0$, G and H are integrable and have bounded variation on $[a, b]$, f is bounded and $f(x) \leq k + (LR)\int_a^b (fH + fG)$ for $x \in [a, b]$ then

(1) if $G \geq 0$ and $H \geq 0$, then $f(x) \leq k \prod_a^x (1 + H)(1 - G)^{-1}$ and $k \prod_a^x (1 + H)(1 - G)^{-1}$ is a solution of the inequality,

(2) if $1 - |G| \geq c > 0$ and $\sup \neq 0$, then $f(x) \leq k \prod_a^x (1 + |H|)(1 - |G|)^{-1}$, and

(3) if $k \geq 0$, the requirement $1 - G \geq c > 0$ cannot be relaxed. Also a Gronwall-type inequality is stated and proved for functions f, G and H which have ranges in a normed ring.

The Main Theorem of Schmaedeke and Sell [3] is a special case of Theorem 4 of this paper. The linear function $J(f)$ defined by Herod [2] is more general than the function $J(f) = (LR)\int (fH + fG)$ defined above; however, there are linear functions $(LR)\int (fH + fG)$ which will satisfy the hypothesis of Theorem 4 but will not satisfy the hypothesis of Herod’s theorem.

2. Definitions and preliminary theorems. For detailed definitions, see [1, p. 299]. All sum and product integrals (represented by the symbol $\prod_a^x G$) are subdivision-refinement-type limits of appropriate sums or products: $(LR)\int_a^b (fH + fG) \sim f(x)H(x, y) + f(y)G(x, y)$, $(m)\int_a^b G \sim \frac{1}{2} [f(x) + f(y)]G(x, y)$, $\prod_a^x (1 + H)(1 - G)^{-1} \sim [1 + H(x, y)][1 - G(x, y)]$, etc. and it is understood that $a \leq x < y \leq b$; R is the set of real numbers, and N is a ring which has a multiplicative element 1 and has a norm $| \cdot |$ with respect to which N is complete and $|1| = 1$; f, u, v, G, H are functions from R or $R \times R$ to N. $G \in OA^0$ on $[a, b]$ iff $\int_a^b G$ exists and $\int_a^b G - fG = 0$; $G \in OM^0$ on $[a, b]$ iff $\prod_a^x (1 + G)$ exists for $a \leq x < y \leq b$ and $\int_a^b (1 + G) - \prod (1 + G) = 0$; $G \in OL^0$ iff $\lim_{x \to p^-} G(x, p)$, $\lim_{x \to p^+} G(p, x)$, $\lim_{x,y \to p^-} G(x, y)$ and $\lim_{x,y \to p^+} G(p, x)$ exist for $p \in [a, b]$. The function G is bounded on $[a, b]$ means there is a subdivision $\{x_i\}_0^n$ of $[a, b]$ and a number M such that if $0 < i \leq n$ and $x_{i-1} \leq x < y \leq x_i$ then $|G(x, y)| < M$. A similar meaning is given to each statement such as $G > 0$ on $[a, b]$, $(1 - G)^{-1}$ exists on $[a, b]$, etc.

Received by the editors May 5, 1969.

493
Theorem 1. Given: f and h are functions from R to N and H, G and B are functions from $R \times R$ to N such that on $[a, b]$, h has bounded variation, $(1 - G)^{-1}$ exists and is bounded, $dh(1 - G)^{-1} \in OA^0$, $B = (1 + H)(1 - G)^{-1}$, $B - 1$ has bounded variation and $\prod B$ exists for $a \leq x < y \leq b$.

Conclusion. The following two statements are equivalent:

1. $f(x)H(x, y) + f(y)G(x, y) \in OA^0$ and $f(x) = h(x) + (LR)f_a(fH + fG)$ for $x \in [a, b]$; and

2. if $a \leq x < y \leq b$, then $(LR)f_a[f(t)B - \prod B] = 0$ and $f(y) = f(x)\prod B + (R)f_a dh(1 - G)^{-1}\prod B$.

This theorem is a special case of Theorem 5.1 [1, p. 310].

Theorem 2. If H and G are functions from $R \times R$ to N such that $H \in OL^0$, $G \in OA^0$ and G has bounded variation on $[a, b]$, then GH and $HG \in OA^0$ and OM^0 on $[a, b]$. Furthermore, if H has bounded variation and $H \in OA^0$ on $[a, b]$ then $\int_a^y GH = \sum_{x \in S} G(x^-, x)H(x^-, x) + G(x, x^+)(x^+, x)$, where S is the subset of $[a, b]$ such that $x \in S$ iff G has a discontinuity at x, $G(a^-, a) = 0$ and $G(b, b^+) = 0$.

The proof of this theorem is given in §4.

If f, H, G are functions such that on $[a, b]$, f, H, G have bounded variation, $H \in OA^0, G \in OA^0$, and $(1 - G)^{-1}$ exists and is bounded, then $(1 - G)^{-1} \in OL^0$ on $[a, b]$ and it follows from Theorem 2 that $df(1 - G)^{-1}$, $H(1 - G)^{-1}$, fH, $(1 + H)(1 - G)^{-1} - 1 = (H + G)(1 - G)^{-1} \in OA^0$ and OM^0 on $[a, b]$.

3. The principal results.

Theorem 3. H and G are functions of bounded variation from $R \times R$ to R, $c \in R$, $H \in OA^0$, $G \in OA^0$, $H \geq 0$, $G \geq 0$ and $1 - G \geq c > 0$ on $[a, b]$ and u is a function from R to R such that u is bounded above on $[a, b]$, $(LR)f_a^*(uH + uG)$ exists and $u(x) \leq f_a^*(uH + uG)$ for $x \in [a, b]$.

Conclusion. If $x \in [a, b]$, then $u(x) \leq 0$.

Proof. Assume the conclusion is false and let S be the subset of $[a, b]$ such that $x \in S$ iff $u(x) > 0$; then S is nonempty and has a greatest lower bound p. Since

$$u(p) \leq (LR) \int_a^p (uH + uG) + (LR) \int_p^p (uH + uG) \leq (LR) \int_p^p (uH + uG) \leq u(p)G(p^-, p),$$

then $u(p)[1 - G(p^-, p)] \leq 0$ and $u(p) \leq 0$; furthermore, $p < b$.

Since H and G have bounded variation and since $G(p, p^+) < 1$, then
there is a number \(y, p < y \leq b \), such that \(\int_a^y H + \int_a^y G < \frac{1}{2} [G(p, p^+)] + 1 \).
Let \(M \) be the least upper bound for \(u \) on \([p, y]\); then there is a number \(z \in [p, y] \) such that \(u(z) > \frac{1}{2} M [G(p, p^+) + 1] \). Hence,

\[
\begin{align*}
u(z) & \leq (LR) \int_a^z (uH + uG) = (LR) \left(\int_a^p + \int_p^{p^+} + \int_{p^+}^x \right) (uH + uG) \\
& \leq u(p) H(p, p^+) + MG(p, p^+) + \int_{p^+}^z (MH + MG) \\
& \leq M \left(\int_{p^+}^z H + \int_p^z G \right) < \frac{1}{2} M [G(p, p^+) + 1] < u(z).
\end{align*}
\]
This contradiction proves that \(u(x) \leq 0 \) for \(x \in [a, b] \).

Theorem 4. Given: \(H \) and \(G \) are functions of bounded variation from \(R \times R \) to \(R \), \(c \in R \), \(H \in OA^\circ \), \(G \in OA^\circ \) and \(1 - G \geq c > 0 \) on \([a, b]\) and \(f \) is a function from \(R \) to \(R \) such that \(f \) is bounded above on \([a, b]\), \((LR)\int_a^b (fH + fG) \) exists, \(k \) is a number and \(f(x) \leq k + (LR) \int_a^x (fH + fG) \) for \(x \in [a, b] \).

Conclusion. (1) If \(H \geq 0 \) and \(G \geq 0 \) on \([a, b]\), then

\[
f(x) \leq k \prod_a^x (1 + H)(1 - G)^{-1} = k \prod_a^x (1 + H) / \prod_a^x (1 - G)
\]
for \(a \leq x \leq b \). Furthermore, the function \(f(x) = k \prod_a^x (1 + H)(1 - G)^{-1} \) is a solution to the inequality.

(2) If \(c \in R \), \(1 - |G| \geq c > 0 \), \((LR)\int_a^b (|H| + |G|) \) exists and \(f \geq 0 \) on \([a, b]\), then

\[
f(x) \leq k \prod_a^x (1 + |H|)(1 - |G|)^{-1} = k \prod_a^x (1 + |H|) / \prod_a^x (1 - |G|)
\]
for \(a \leq x \leq b \).

Proof of part 1. Suppose \(H \geq 0 \) and \(G \geq 0 \) on \([a, b]\). Since \((1 - G)^{-1} \) exists and is bounded on \([a, b]\), it follows from Theorem 2 that \((1+H)(1-G)^{-1} - 1 \in OM^\circ \) and has bounded variation on \([a, b]\). Let \(v \) be the function such that \(v(x) = k \prod_a^x (1+H)(1-G)^{-1} \) for \(x \in [a, b] \); then \(v \) is bounded on \([a, b]\). It follows from Theorem 1(2\(\rightarrow 1\)) that \(v(x) = k + (LR) \int_a^x (vH + vG) \). Let \(u = f - v \); then, for \(x \in [a, b] \),

\[
u(x) \leq (LR) \int_a^x [(f - v)H + (f - v)G] = (LR) \int_a^x (uH + uG).
\]
Since f is bounded above, then u is bounded above on $[a, b]$ and, from Theorem 3, $u(x) \leq k \prod \epsilon^2 (1 + H)(1 - G)^{-1}
abla = k \prod \epsilon^2 (1 + H)/(1 - G)$, since $\prod \epsilon^2 (1 - G) \neq 0$. The second half of part 1 follows because $k \prod \epsilon^2 (1 + H)(1 - G)^{-1}$ is a solution of the equation $f(x) = k + (LR) \int_a^b (fH + fG)$.

Proof of Part 2. Suppose $1 - |G| \geq c > 0$, $(LR) \int_a^b (f|H| + f|G|)$ exists and $f \geq 0$ on $[a, b]$. Since $|H| \in O\mathcal{A}$ and $|G| \in O\mathcal{A}$ and

$$f(x) \leq k + (LR) \int_a^b (fH + fG) \leq k + (LR) \int_a^b (f|H| + f|G|)$$

for $x \in [a, b]$, the desired inequality follows from part 1 above. Note that if f is quasicontinuous, it follows from Theorem 2 that $(LR) \int_a^b (f|H| + f|G|)$ exists.

Theorem 5. If H and G are functions from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R}, $G(b^-, b) \geq 1$, and k and M are nonnegative numbers, then there is a function f such that $f(x) \leq k + (LR) \int_a^b (fH + fG)$ for $x \in [a, b]$ and $f(b) > kM$.

Proof. Let f be the function such that $f = 0$ on $[a, b)$ and $f(b) > kM$. Then

$$f(b) = f(b)G(b^-, b) = (LR) \int_a^b (fH + fG) \leq k + (LR) \int_a^b (fH + fG),$$

and, if $x \in [a, b)$, $f(x) = 0 \leq k + (LR) \int_a^b (fH + fG)$.

Theorem 6. If M, k and c are numbers such that $M > 0$ and $c > 0$ and H and G are functions from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} such that $G(b^-, b) > 1$ and on $[a, b]$ H and G have bounded variation, $H \in O\mathcal{A}$, $G \in O\mathcal{A}$ and $|1 - G| > c$, then there is a function f from \mathbb{R} to \mathbb{R} such that $f(b) > |k| M$ and $f(x) \leq k + (LR) \int_a^b (fH + fG)$ for $x \in [a, b]$.

Proof. Let f be a function such that $f(x) = k \prod \epsilon^2 (1 + H)(1 - G)^{-1}$ for $x \in [a, b)$ and $f(b)$ is a number such that $f(b) > |k| M$ and $f(b)[G(b^-, b) - 1] + [(LR) \int_a^b fH + (R) \int_a^b fG + k] > 0$. From Theorem 4, f is a solution on $[a, b)$. Also,

$$(LR) \int_a^b (fH + fG) = (L) \int_a^b fH + (R) \int_a^b fG + f(b)[G(b^-, b) - 1]$$

+ $f(b) + k - k > f(b) - k$;

therefore, f is a solution on $[a, b]$. In the following theorem, A and B denote the functions $B = (1 + H)(1 - G)^{-1}$ and $A(p, q) = \prod \epsilon^2 B$; P denotes a bound for A on $[a, b]$; $Q(x, y) = G(x, y)[1 - G(x, y)]^{-1}P$ and $M(a, x)$ is the sum of the
magnitudes of the discontinuities of Q on $[a, b]$. Note that N is a normed ring and that the inequalities $|G(x^-, x)| > 1$ and $|G(x, x^+)| > 1$ are permitted.

Theorem 7. Given: $k > 0$, f is a function from R to N, G and H are functions from $R \times R$ to N such that on $[a, b]$ f, G and H have bounded variation, $G \in OA^0$, $H \in OA^0$, and $(1 - G)^{-1}$ exists and is bounded.

Conclusion. If $|f(x) - (LR)f_a^a(fH + fG)| < k$ for $a \leq x \leq b$, then

$$|f(y)| \leq k[1 + V_a^a A + 2M(a, y)]$$

for $a \leq y \leq b$.

Proof. Let h be the function such that $h(y) = f(y) - (LR)f_a^a(fH + fG)$ for $a \leq y \leq b$. Since f, H and G have bounded variation, then h has bounded variation. The function $B - 1 = (1 + H)(1 - G)^{-1} - 1 = (H + G)(1 - G)^{-1}$ has bounded variation. From Theorem 2, $dH(1 - G)^{-1} \in OA^0$, $f(x)H(x, y) + f(y)G(x, y) \in OA^0$, $B - 1 \in OM^0$, and $\prod B$ exists for $a \leq x < y \leq b$. Since $f(y) = h(y) + (LR)f_a^a(fH + fG)$, the hypothesis of Theorem 1 $(1 \rightarrow 2)$ is satisfied and for $a \leq y \leq b$

$$f(y) = f(a)A(a, y) + (R)\int_a^y dh(1 - G)^{-1}A(t, y)$$

$$= f(a)A(a, y) + (R)\int_a^y dh[1 + G(1 - G)^{-1}]A(t, y)$$

$$= f(a)A(a, y) + (R)\int_a^y dhA(t, y) + (R)\int_a^y dhG(1 - G)^{-1}A(t, y),$$

and

$$f(a)A(a, y) + (R)\int_a^y dhA(t, y)$$

$$= f(a)A(a, y) + h(t)A(t, y)\bigg|_a^y - (L)\int_a^y hdA(t, y)$$

$$= f(a)A(a, y) + h(y)A(y, y) - h(a)A(a, y) - (L)\int_a^y hdA(t, y)$$

$$= h(y) - (L)\int_a^y hdA(t, y).$$

From Theorem 2, it follows that $| (R)\int_a^y dh(G(1 - G)^{-1}A(t, y)) | \leq 2kM(a, y)$. Hence,
\[|f(y)| \leq \left| h(y) - (L) \int_a^y hA(t, y) + (R) \int_a^y dh[G(1 - G)^{-1}A(t, y)] \right| \]
\[\leq k + kV_aA + 2kM(a, y) = k[1 + V_aA + 2M(a, y)]. \]

If \(H(x, y) = G(x, y) = \frac{1}{2}[g(y) - g(x)] \), then \((m)Jf \) is a special case of \((LR)fH + fG \), \((m)Jf \) is a special case of \((LR)fH + fG \), and Schmaedeke and Sell's Main Theorem [3, p. 1219] is a special case of Theorem 4. Similarly, \((R)Jfdg \), \((L)Jfdg \) and the Riemann-Stieltjes integral are special cases. If \(f \) is left or right continuous on \([a, b]\), then \((D)Jfdg = (R)Jfdg \) or \((D)Jfdg = (L)Jfdg \), respectively, where \((D)Jfdg \) is the Dushkin integral [3, p. 1218]. Herod's linear function \(J(f) [2, p. 570] \) is more general than the function \(J(f)(x, y) = (LR)fH + fG \); however, the results of Theorem 4 are better than Herod's results in the sense that Theorem 4 permits \(f \) to have unbounded variation and permits \((LR)f^H + fG \) to have discontinuities greater than 1. Note that the function \(\prod (1 + H)(1 - G)^{-1} \) defined in Theorem 4 satisfies each of the properties listed by Herod for the function \(m(x, y) \): \(m(x, y) \geq 1 \), \(m(x, y)m(y, z) = m(x, z) \) for \(x < y < z \), and \(m(0, x) = 1 + J[m(0, \cdot)](0, x) \).

4. **Proof of Theorem 2.** In this section Theorem 2 and a necessary lemma are proved.

Lemma. Given: \(H \) is a function from \(RXR \) to \(N \), \(H \in OL^o \) on \([a, b]\), \(e > 0 \), and \(S^- \) and \(S^+ \) are subsets of \([a, b]\) such that \(p \in S^- \) iff \(\lim_{x,y \to p^-} H(x, y) - H(p^-, p) | \geq e \)

and \(p \in S^+ \) iff \(\lim_{x,y \to p^+} H(x, y) - H(p, p^+) | \geq e \).

Conclusion. (1) \(S^- \) and \(S^+ \) are finite sets and (2) there is a subdivision \(\{x_i\}_0^n \) of \([a, b]\) such that \(H \) is bounded on \([x_i-1, x_i]\) for \(i = 1, 2, 3, \cdots, n \).

Proof. Suppose \(S^- \) is an infinite set; then \(S^- \) has an accumulation point \(q \in [a, b] \) and there is a subset \(\{p_n\}_1^\infty \) of \(S^- \) and a sequence \(\{x_n, y_n\}_1^\infty \) of number pairs such that \(p_n \to q^- \) and \(x_n, y_n \to q^- \) (or \(p_n \to q^+ \) and \(x_n, y_n \to q^+ \)) and such that \(|H(x_n, y_n) - H(p_n, p_n)| \geq e \) for \(n = 1, 2, 3, \cdots \). Since \(H \in OL^o \),

\[\lim_{n \to \infty} H(x_n, y_n) = \lim_{n \to \infty} H(p_n, p_n) \]

and...
\[0 = \lim_{n \to \infty} \left| H(x_n, y_n) - H(p_n^-, p_n^+) \right| \geq \epsilon. \]

Similarly, \(S^+ \) is a finite set.

Since \(H \in \mathcal{O}L^0 \), then \(H \) is bounded in a neighborhood of each point of \([a, b]\). The covering theorem assures that there is a subdivision which has the desired property.

Proof of Theorem 2. Let \(\epsilon > 0 \) and let \(M \) be the number and \(A, B, C, D, E, T_i \) be the number sets defined as follows:

1. \(A = \{a_i\}_{i=0}^n \) is a subdivision of \([a, b]\) and \(M \) is a number such that if \(0 < i \leq r \) and \(a_{i-1} \leq x < y \leq a_i \) then \(|H(x, y)| < M \).
2. \(B = \{b_i\}_{i=1}^s \) is the subset of \([a, b]\) such that \(p \in B \) iff
 \[
 \lim_{x, y \to p^+} H(x, y) - H(p, p^+) \geq \epsilon/(8V_{aG})
 \]
 or
 \[
 \lim_{x, y \to p^-} H(x, y) - H(p^-, p) \leq \epsilon/(8V_{bG}).
 \]
3. \(C = \{c_i\}_{i=1}^s \) and \(D = \{d_i\}_{i=1}^s \) are subsets of \([a, b]\) such that \(c_i < b_i < d_i \) for \(i = 1, 2, \ldots, s \) and
 \[
 \sum_{i=1}^s (V_{c_i}^{b_i}G + V_{d_i}^{b_i}G) < \epsilon/8M
 \]
 and \(|H(x, b_i) - H(y, b_i)|, |H(b_i, x) - H(b_i, y)| \) and \(|H(x, y) - H(p, q)| \) are less than \(\epsilon/(8V_{aG}) \) whenever \(x, y, p, q \in [c_i, b_i] \) or \(x, y, p, q \in (b_i, d_i] \).
4. \(T_i = \{t_{ij}\}_{j=1}^r \) for \(i = 1, 2, \ldots, s \) is a subdivision of \([d_i, c_{i+1}]\) such that, if \(t_{ij} \leq x < y \leq t_{i,j+1} \) and \(t_{ij} \leq p < q \leq t_{i,j+1} \), then \(|H(x, y) - H(p, q)| < \epsilon/(8V_{bG}) \).
5. \(E = \{z_i\}_{i=1}^m \) is a subdivision of \([a, b]\) such that if \(D' = \{y_{ij}\}_{i,j} \) is a refinement of \(E \), then
 \[
 \sum_i \left| G_i - \sum_j G_{ij} \right| < \epsilon/8M,
 \]
 where \(G_i = G(z_{i-1}, z_i) \) and \(G_{ij} = G(y_{i,j-1}, y_{ij}) \) and \(z_{i-1} \leq y_{i,j-1} < y_{ij} \leq z_i \).

Similar abbreviated notations are used in the following manipulations.

Let \(D' = \{x_{ij}\}_{i,j} \) be a refinement of the subdivision \(K = A \cup B \cup C \cup D \cup E \cup T_i = \{x_i\}_i \). In the following, \(\sum_i \) depends on \(K \); \(\sum_i G_{ij} \) depends on \(D' \) and \(\{x_{i-1}, x_i\}; i \in Q \) iff \(x_i \in B \).
\[\sum_i \left| \sum_j H_{ij}G_{ij} - H_iG_i \right| \]

\[= \sum_i \left| H_i \left(\sum_j G_{ij} - G_i \right) + \sum_j (H_{ij} - H_i)G_{ij} \right| \]

\[\leq \sum_i \left| H_i \right| \cdot \left| \sum_j G_{ij} - G_i \right| + \sum_{i \in Q} \sum_j \left| (H_{ij} - H_i)G_{ij} \right| \]

\[+ \sum_{i \in Q} \sum_j \left| (H_{ij} - H_i) \right| \left| G_{ij} \right| \]

\[< M(\epsilon/8M) + \sum_{i \in Q} \sum_j b_{ij} \left| H_{ij} - H_i \right| \left| G_{ij} \right| \]

\[+ \sum_{i \in Q} \sum a_{ij} \left| H_{ij} - H_i \right| \left| G_{ij} \right| + (\epsilon/8V_{aG})V_{bG}^b \]

\[< \epsilon/8 + (\epsilon/8V_{aG})V_{bG}^b + 2M \sum_i (V_{cG}^b G + V_{dG}^b G) + \epsilon/8 < \epsilon, \]

where \(a_{ij} = 1 \) and \(b_{ij} = 0 \) provided \(i \in Q \) and \(x_{ij} \) is the largest element of \(D' \) such that \(x_{ij} < x_i \) or \(x_{ij} \) is the smallest element of \(D' \) such that \(x_{ij} > x_i \); otherwise, \(a_{ij} = 0 \) and \(b_{ij} = 1 \). Hence, \(HG \in OA_0 \) and, similarly, \(GH \in OA_0 \). It follows from Theorem 3.4 [1, p. 301] that \(HG \) and \(GH \in OM_0 \).

Suppose \(H \) has bounded variation and \(H \in OA_0 \) on \([a, b]\) and let \(g \) and \(h \) be the functions such that \(g(x) = G(a, x) \) and \(h(x) = H(a, x) \); then \(g \) and \(h \) are quasicontinuous and it follows from Theorem 3.1 [1, p. 300] that

\[\int_a^b GH = \int_a^b (fG)(fH) = \int_a^b dgdh \]

\[= \sum_{x \in S} \{ [g(x) - g(x^-)][h(x) - h(x^-)] \]

\[+ [g(x^+) - g(x)][h(x^+) - h(x)] \} \].

Bibliography

Southwest Texas State University