EQUIVALENT METRICS GIVING DIFFERENT VALUES TO METRIC-DEPENDENT DIMENSION FUNCTIONS1

J. C. NICHOLS

In [1] K. Nagami and J. H. Roberts introduced metric-dependent dimension functions \(d_2 \) and \(d_3 \) defined on the class of all metric spaces. All definitions are given below. The definition of \(d_5 \) is due to R. E. Hodel [5]. The following relations hold for all metric spaces \((X, \rho)\):
\[
d_2(X, \rho) \leq d_3(X, \rho) \leq d_5(X, \rho) \leq \mu\dim(X, \rho) \leq \dim X,
\]
where \(\mu\dim \) is metric dimension as defined by Katětov [3], and \(\dim X \) is covering dimension.

The following is a natural question. Suppose \(d \) is \(d_2, d_3, d_5, \) or \(\mu\dim \); and suppose \(d(X, \rho) = r < n = \dim X \). Then for every \(k (r \leq k \leq n) \) does there exist a topologically equivalent metric \(\rho_k \) for \(X \) such that \(d(X, \rho_k) = k \)? Roberts and Slaughter [2] answered this question in the affirmative when \(d \) is \(\mu\dim \). Roberts [6] answered this question in the affirmative for all separable metric spaces when \(d \) is \(d_3 \). This paper answers this question in the affirmative for all metric spaces when \(d \) is \(d_3 \) or \(d_5 \). The question remains unanswered when \(d \) is \(d_2 \).

In the following if \(S \) is a set, \(|S| \) will denote the cardinality of \(S \).

Definition. Let \(\eta \) be any ordinal number. A metric space \((X, \rho)\) is said to have property \(P(|\eta|, n, \rho) \) if given any collection of pairs of closed sets indexed by \(\eta \), \(\mathcal{C} = \{(C_\alpha, C'_\alpha): \alpha < \eta\} \) such that there exists an \(\epsilon > 0 \) with \(\rho(C_\alpha, C'_\alpha) \leq \epsilon \) for all \(\alpha < \eta \) then there exists a collection of closed sets \(\{B_\alpha: \alpha < \eta\} \) such that \(B_\alpha \) separates \(X \) between \(C_\alpha \) and \(C'_\alpha \) and order \(\{B_\alpha: \alpha < \eta\} \leq k \).

Definition. \(d_2(X, \rho) \) is the smallest integer \(n \) such that \((X, \rho)\) has property \(P(n+1, n, \rho) \).

Definition. \(d_3(X, \rho) \) is the smallest integer \(n \) such that \((X, \rho)\) has property \(P(m, n, \rho) \) for every integer \(m \).

Definition. \(d_5(X, \rho) \) is the smallest integer \(n \) such that \((X, \rho)\) has property \(P(\aleph_0, n, \rho) \).

Definition. \(\mu\dim(X, \rho) \) is the smallest integer \(n \) such that for each \(\epsilon > 0 \) there exists an open cover \(\mathcal{U} \) of \(X \) with

1 This work is taken from the author's doctoral dissertation at Duke University.

I would like to thank Dr. J. H. Roberts for his guidance in the preparation of this paper.

Presented to the Society, March 14, 1969 under the title Realization of a particular metric-dependent dimension function; received by the editors May 2, 1969.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
EQUIVALENT METRICS GIVING DIFFERENT VALUES

(i) \(p \)-mesh \(\mathcal{U} \leq \epsilon \) and
(ii) order \(\mathcal{U} \leq n + 1 \).

Lemma. Suppose \((X, \rho)\) is a metric space, \(f: X \to [0, 1]\) is a continuous function and \(\sigma(x, y) = \rho(x, y) + |f(x) - f(y)|\). Then \(\sigma\) is a metric on \(X\) topologically equivalent to \(\rho\). (See [4, p. 199].)

Theorem 1. Suppose \((X, \rho)\) is a metric space, \(f: X \to [0, 1]\) a continuous function and \(\sigma(x, y) = \rho(x, y) + |f(x) - f(y)|\).

1. If \(\eta\) is any ordinal number such that \(\aleph_0 \leq |\eta| \leq 2^{\aleph_0}\) and \((X, \rho)\) has property \(P(|\eta|, k, \rho)\) then \((X, \sigma)\) has property \(P(|\eta|, k + 1, \sigma)\).
2. If \((X, \rho)\) has property \(P(m, k, \rho)\) for every integer \(m\) then \((X, \sigma)\) has property \(P(m, k + 1, \sigma)\) for every integer \(m\).

Remark. To prove Theorem 2, the principle result of this paper, Theorem 1 is used only for the cases where \(\eta\) is countable or finite.

Proof of Theorem 1. Let \(\mathcal{E} = \{(C_a, C'_a): \alpha < \eta\}\) be any collection of pairs of closed sets with \(|\eta| \geq 2^{\aleph_0}\) and with \(\sigma(C_a, C'_a) \geq \epsilon\) for all \(\alpha < \eta\) and for some \(\epsilon > 0\). Choose an integer \(N_0\) so that \(1/N_0 < \epsilon/4\). Since \(|\eta| \leq 2^{\aleph_0}\) there exists a set \(T_0\) with \(T_0 \subseteq [0, 1/N_0]\) and with \(|T_0| = |\eta|\). We can assume that \(T_0 = \{t_\alpha: \alpha < \eta\}\) where if \(t_\alpha = t_\beta\) then \(\alpha = \beta\). Let \(S = \{0, 1, 2, \ldots, N_0\}\) and let \(t_0 = 0\) and \(t_{N_0 + 1} = 1\) for all \(\alpha < \eta\). For each \(i, 1 \leq i \leq N_0\) and each \(\alpha < \eta\) let \(t_i^\alpha = t_\alpha + (i - 1)/N_0\). Now for each \(i \in S\) and each \(\alpha < \eta\) define

\[
E_i^\alpha = \{x: t_i^\alpha \leq f(x) \leq t_{i+1}^\alpha\}
\]

and define

\[
D_i^\alpha = \{x: \rho((C_a \cap E_i^\alpha), x) \geq \epsilon/4\}.
\]

Then for \(i \in S\) and \(\alpha < \eta\) we have \(\rho((C_a \cap E_i^\alpha), C_a \cap E_i^\alpha) \geq 3\epsilon/4\) because for \(x, y \in E_i^\alpha\) we have \(|f(x) - f(y)| \leq 1/N_0 \leq \epsilon/4\). Thus \(D_i^\alpha \supseteq C_a \cap E_i^\alpha\) for all \(i \in S\) and \(\alpha < \eta\). Now \(\mathcal{D} = \{(D_i^\alpha, C_a \cap E_i^\alpha): i \in S, \alpha < \eta\}\) is a collection of pairs of closed sets with \(\rho(D_i^\alpha, C_a \cap E_i^\alpha) \geq \epsilon/4\). In Case (1) where \(\aleph_0 \leq |\eta| \leq 2^{\aleph_0}\), we have \(|\mathcal{D}| = |\eta|\). In Case (2) we have \(|\eta| = m\) for some integer \(m\) and \(|\mathcal{D}| = m\aleph_0\). Thus in either case our hypothesis guarantees the existence of a collection of closed sets \(\{B_i^\alpha: i \in S, \alpha < \eta\}\) with

(i) order \(\{B_i^\alpha: i \in S, \alpha < \eta\} \leq k\) and
(ii) \(X - B_i^\alpha = U_i^\alpha \cup V_i^\alpha\) where \(U_i^\alpha\) and \(V_i^\alpha\) are disjoint open sets and \(D_i^\alpha \subseteq V_i^\alpha\) and \(C_a \cap E_i^\alpha \subseteq U_i^\alpha\).

For each \(\alpha < \eta\) we will modify the collection \(\{B_i^\alpha: i \in S\}\) to obtain a closed set \(B_\alpha\) separating \(X\) between \(C_a\) and \(C'_a\) using a variation of a method due to J. H. Roberts [7].

For each \(i \in S\) and \(\alpha < \eta\) define \(L_i^\alpha = \{x: f(x) = t_i^\alpha\}\). Notice that
\[L^i = E^i_{a-1} \cap E^i_a, \text{ for } i \text{ such that } 1 \leq i \leq N_0. \]
For each \(\alpha < \eta \), let \(L^N_0 + 1 = \emptyset \) and define
\[
B_a = \bigcup_{j=0}^{N_0} \left[\left(B_a^j \cap E_a^j \right) \cup \left(L_a^{j+1} \cap \left(\left(U_a^j - U_a^{j+1} \right) \cup \left(U_a^{j+1} - U_a^j \right) \right) \right) \right],
\]
\[
U_a = \bigcup_{j=0}^{N_0} \left(U_a^j \cap E_a^j \right) - B_a,
\]
\[
V_a = \bigcup_{j=0}^{N_0} \left(V_a^j \cap E_a^j \right) - B_a.
\]

Assertion 1. For each \(\alpha < \eta \), \(B_a \) is a closed set separating \(X \) between \(C_a \) and \(C'_a \).

Proof. First we show that \(B_a \) is closed. Let \(H_a = \bigcup_{j=0}^{N_0} \left(B_a^j \cap E_a^j \right) \) and let \(G_a = \bigcup_{j=0}^{N_0} \left[\left(U_a^j \cap E_a^j \right) \cup \left(L_a^{j+1} \cap \left(\left(U_a^j - U_a^{j+1} \right) \cup \left(U_a^{j+1} - U_a^j \right) \right) \right) \right] \). It suffices to show that \(G_a \subseteq B_a \) since \(H_a \) is closed. If \(x \) is a limit point of \(G_a \) then there exists some \(k \in S \) such that \(x \) is a limit point of \(L_a^{k+1} \cap \left(\left(U_a^k - U_a^{k+1} \right) \cup \left(U_a^{k+1} - U_a^k \right) \right) \). We may assume then that \(x \) is a limit point of \(U_a^k \) hence a limit point of \(U_a^{k-1} \). But \(X - B_a^k = U_a^k \cup V_a^k \). Thus either \(x \in U_a^k \) or \(x \in B_a^k \) and in either case \(x \in B_a \) so \(B_a \) is closed.

Next we show that \(X - B_a = U_a \cup V_a \). If \(x \in X \), there exists \(k \in S \) such that \(x \in E_a^k \), since \(\bigcup_{j=0}^{N_0} E_a^j = X \). If \(x \in B_a \) then surely \(x \in B_a^k \cap E_a^k \). But \(X - B_a^k = U_a^k \cup V_a^k \) so \(x \) is in one of \(U_a^k \) or \(V_a^k \) hence one of \(U_a \) or \(V_a \).

We show that \(U_a \cap V_a = \emptyset \). If \(x \in U_a \) then either \(x \in U_a^k \) for exactly one \(k \in S \) or \(x \in E_a^k \cap E_a^{k+1} \) for exactly one \(k \in S \). In the first case since \(x \in U_a^k \), we have \(x \in V_a^k \) hence \(x \in V_a \). In the second case we can show that \(x \in U_a^k \). The only possibility to have \(x \in V_a \) is to have \(x \in V_a^{k+1} \). But then \(x \in U_a^{k+1} \) hence \(x \in \left(U_a^k - U_a^{k+1} \right) \cap \left(E_a^k \cap E_a^{k+1} \right) \). Thus \(x \in B_a \) and \(x \in V_a \) so we conclude that \(U_a \cap V_a = \emptyset \).

To show that \(C_a \subseteq U_a \) we first show that \(C_a \cap B_a = \emptyset \). Let \(x \in C_a \) and suppose that \(x \in E_a^j \) for exactly one \(k \). Then \(x \in L_a^j \) for any \(j \in S \).

Now \((C_a \cap E_a^j) \cap B_a^k = \emptyset \) because \(X - B_a^k = U_a^k \cup V_a^k \) where \((C_a \cap E_a^j) \subseteq U_a^k \). So in this case \(x \in B_a \). If \(x \in E_a^k \cap E_a^{k+1} \) for some \(k \in S \) then \(x \in U_a^k \) and \(x \in U_a^{k+1} \). Thus \(x \in B_a \) and \(C_a \cap B_a = \emptyset \). Since \(C_a \subseteq \bigcup_{j=0}^{N_0} \left(U_a^j \cap E_a^j \right) \) and \(C_a \cap B_a = \emptyset \) we conclude that \(C_a \subseteq U_a \).

From the definition of \(D_a^j \) it is clear that \(C'_a \subseteq \bigcup_{j=0}^{N_0} D_a^j \) but \(D_a^j \subseteq V_a \) so \(C'_a \subseteq \bigcup_{j=0}^{N_0} V_a \). Thus if we show that \(C'_a \cap B_a = \emptyset \) we can conclude that \(C'_a \subseteq V_a \). Let \(x \in C'_a \) and let \(x \in E_a^k \) for exactly one \(k \). Then \(x \in V_a^k \) hence \(x \in B_a \). If \(x \) is in \(E_a^k \cap E_a^{k+1} \) then \(x \in V_a^k \) and \(x \in V_a^{k+1} \) hence \(x \in U_a^k \) and \(x \in U_a^{k+1} \) so \(x \in B_a \). Thus \(C'_a \subseteq V_a \).
We show that U_a is open. Let $x \in U_a$. Then $x \in B_a$ a closed set so there exists an open set M_x containing x with $M_x \cap B_a = \emptyset$. Suppose $x \in E_a^k$ for some unique k. Then x is in the interior of E_a^k so there exists an open set N_x with $x \in N_x \subseteq E_a^k$. Then $x \in M_x \cap N_x \cap U_a \subseteq U_a$. Suppose $x \in U_a^{k+1}$ some $k \in S$. Since x is in the interior of $E_a^k \cup E_a^{k+1}$ choose an open set N_x so that $x \in N_x \subseteq E_a^k \cup E_a^{k+1}$. Since $x \in U_a^{k+1}$ and $x \in U_a^k$ and $x \in B_a$ we have $x \in U_a^{k+1}$. Thus $x \in (U_a^k \cap U_a^{k+1}) \cap M_x \cap N_x \subseteq U_a$. Thus U_a is open. A similar argument shows that V_a is open. This completes the proof of Assertion 1.

Assertion 2. Order $\{B_a: \alpha < \eta\} \leq k + 1$.

Proof. Let $P_a = \bigcup_{j=0}^{N_a} (B_a^j \cap E_a^j)$. Then order $\{P_a: \alpha < \eta\} \leq k$ since order $\{B_a^j: j \in S, \alpha < \eta\} \leq k$. For $\alpha < \eta$ let $Q_a = \bigcup_{j=1}^{L_a} L_a^j$. Now order $\{Q_a: \alpha < \eta\} \leq 1$. Hence order $\{B_a: \alpha < \eta\} \leq \text{order } \{(P_a \cap Q_a): \alpha < \eta\} \leq k + 1$. This completes the proof of the theorem.

Corollary. Let (X, ρ) be a metric space, $f: X \to [0, 1]$ a continuous function, $\sigma(x, y) = \rho(x, y) + |f(x) - f(y)|$, and let d be d_3 or d_5. If $d(X, \rho) \leq k$ then $k \leq d(X, \sigma) \leq k + 1$.

Theorem 2. Let (X, ρ) be a metric space and let d be d_3 or d_5. Suppose $d(X, \rho) = r < n = \dim X$. Then for each $k, r \leq k \leq n$ there exists a topologically equivalent metric ρ_k for X such that $d(X, \rho_k) = k$.

Proof. Let $C_1, C'_1, C_2, C'_2, \ldots, C_n, C'_n$ be n pairs of disjoint closed sets with the property that if for each $i = 1, \ldots, n$ B_i is a closed set separating C_i and C'_i, then $\bigcap_{i=1}^{n} B_i \neq \emptyset$. This is possible since $\dim X = n$. For each $i = 1, \ldots, n$ let $f_i: X \to [0, 1]$ such that f is continuous, $f_i(C_i) = 0$ and $f_i(C'_i) = 1$. For each $i = 1, \ldots, n$ define $\sigma_i: X \times X \to \text{real numbers}$ by

$$\sigma_i(x, y) = \rho(x, y) + \sum_{j=1}^{i} |f_j(x) - f_j(y)|.$$

Now $\sigma_n(C_i, C'_i) \geq 1$ for all $i = 1, \ldots, n$ thus $d(X, \sigma_n) \geq n$. But by the above corollary $d(X, \sigma_{i+1}) \leq d(X, \sigma_i) + 1$. Thus all values $k, r \leq k \leq n$, are assumed and the theorem is proved.

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Duke University

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use