A note on a theorem of Weyl
HTML articles powered by AMS MathViewer
- by Kenneth K. Warner
- Proc. Amer. Math. Soc. 23 (1969), 469-471
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250102-0
- PDF | Request permission
References
- L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. MR 201969
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 J. Nieto, On the essential spectrum of multiplication operators, singular integral operators and symmetrizable operators, Notices Amer Math. Soc. 14 (1967), 671.
- Martin Schechter, On the essential spectrum of an arbitrary operator. I, J. Math. Anal. Appl. 13 (1966), 205–215. MR 188798, DOI 10.1016/0022-247X(66)90085-0
- Angus E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49. MR 190759, DOI 10.1007/BF02052483
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966 H. Weyl, Uber beschränkte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 23 (1969), 469-471
- MSC: Primary 47.30
- DOI: https://doi.org/10.1090/S0002-9939-1969-0250102-0
- MathSciNet review: 0250102