Let \(\psi(z) \) be a univalent meromorphic function defined on \(U \), the unit disc, and let \(S^2 \) denote the Riemann sphere, that is, the one point compactification of the complex plane \(\mathbb{R}^2 \). Let \(C(\psi, e^{it}) \) be the set of all points \(\xi \) in \(S^2 \) such that there exists a sequence \(z_n \to e^{it} \) with \(\psi(z_n) \) clustering at \(\xi \). It is easily seen that \(C(\psi, e^{it}) \subseteq \partial \psi(U) \), and Furthermore, \(\partial \psi(U) \) has at least two points. If \(B(z) \) is a finite Blaschke product, and \(f(z) = \psi(B(z)) \), then \(C(f, e^{it}) \subseteq \partial f(U) \). If \(B(z) \) is an infinite Blaschke product, this property is destroyed since \(\psi(0) \in C(f, e^{it}) \), where the zeros of \(B(z) \) cluster at \(e^{it} \).

The purpose of this paper is to present the following theorem, characterizing those meromorphic functions “clustering on the boundary”:

Theorem. Let \(f(z) \) be meromorphic in \(U \). Then \(C(f, e^{it}) \subseteq \partial f(U) \), for all \(e^{it} \), with \(\partial f(U) \) consisting of at least two points, if and only if \(f(z) = \psi(B(z)) \), where \(\psi(z) \) is a univalent meromorphic function and \(B(z) \) a finite Blaschke product.

Proof. We first show \(f(U) \) is simply connected, that is, \(K = S^2 - f(U) \) is connected. We may assume \(K \) is compact in \(\mathbb{R}^2 \). (Let \(z_0 \in f(U), T(z) = 1/(z - z_0) \), and \(g(z) = T(f(z)) \). Then \(g(U) \) contains \(\infty \) and \(C(g, e^{it}) \subseteq \partial g(U) \). If \(g(z) = \psi(B(z)) \), then \(f(z) = T^{-1} \psi(B(z)) \).) Suppose that \(K \) has two different components \(K_1 \) and \(K_2 \), and let \(\xi_i \in \partial f(U) \cap K_i, i = 1, 2 \). By the Zoretti Theorem [3, p. 35], there exists a Jordan curve \(J \) such that \(J \cap K = \emptyset \) and \(J \) separates \(K_1 \) and \(K_2 \). Since \(\xi_i \in \partial f(U) \), there exists \(e^{it_i} \) such that \(\xi_i \in C(f, e^{it_i}) \), and since this latter set is connected, it is contained in \(K_i \). Choose sequences \(z_n \to e^{it_i} \) and \(z_n' \to e^{it_i} \) such that

1. \(|z_n| / \gamma_1 \) and \(|z_n'| / \gamma_1 \),
2. \(f(z_n) \in \text{interior of } J \) and \(f(z_n') \in \text{exterior of } J \).

Let \(\gamma_n \) be the circular arc \(z(t) = |z_n| e^{it}, t \) varying between \(\arg z_n \) and \(\arg z_n' \), together with the segment \([z_n', |z_n| e^{i \arg z_n'}]\). By (2), we may choose \(w_n \in \gamma_n \) such that \(f(w_n) \in J \). If \(w_n \) clusters at \(e^{it}, f(w_n) \) clusters in \(J \), a subset of \(f(U) \), and therefore, \(C(f, e^{it}) \cap f(U) \neq \emptyset \), a contradiction. Hence \(K \) is connected, and consequently \(f(U) \) is simply connected.

Received by the editors April 14, 1969.
Let \(\psi \) be a 1-1 meromorphic function from \(U \) onto \(f(U) \) guaranteed by the Riemann mapping theorem, and consider \(B(z) = \psi^{-1}(f(z)) \). If \(z_n \in U \) and \(z_n \to e^{it} \) with \(B(z_n) \to w \) and \(|w| < 1 \), then \(\psi(w) = \lim_{n \to \infty} f(z_n) \in f(U) \), contradicting the hypothesis that \(C(f, e^{it}) \subset \partial f(U) \). Hence
\[
\min \left| B(re^{it}) \right| \to 1 \quad \text{as} \quad r \to 1.
\]
Therefore, \(B(z) \) has finitely many zeros, and \(C(B, e^{it}) \subset \{ z : |z| = 1 \} \), for all \(e^{it} \). It is now easy to show that \(B(z) \) is a unimodular constant times the finite Blaschke product formed by the zeros of \(B(z) \), \(B_1(z) \), by applying the maximum modulus principle to \(B/B_1 \) and \(B_1/B \).

Corollary 1. If \(f(z) \) is meromorphic in \(U \) with \(C(f, e^{it}) \subset \partial f(U) \) for all \(e^{it} \), then,

1. \(f(z) \) is \(m \)-valent for some positive integer \(m \);
2. \(f \in H^p \), \(0 < p < 1/2 \); and
3. \(f(z) \) converges nontangentially as \(z \to e^{it} \) except possibly for a set of capacity zero.

Proof. (1) is true since \(B(z) \) is \(m \)-valent.
(2) and (3) follow since it is well known that a univalent function possesses properties (2) and (3). (See [1, p. 473], and [2, p. 56].)

Corollary 2. Let \(f(z) \) be meromorphic in \(U \) with \(f(U) \) multiply connected. Then there exists a point \(e^{it} \) such that \(C(f, e^{it}) \cap f(U) \neq \emptyset \).

Bibliography

Louisiana State University