THE REPRESENTATION OF CHAINABLE CONTINUA
WITH ONLY TWO BONDING MAPS

SAM W. YOUNG

Definition. A set S of continuous functions of $[0, 1]$ into $[0, 1]$ is called a "complete" set of bonding maps if every chainable continuum can be obtained as the inverse limit of an inverse mapping system each of whose coordinate spaces is $[0, 1]$ and each of whose bonding maps is in S.

It is shown in [1] that a dense set is complete. Jolly and Rogers in [3] demonstrate a complete set with only four elements. It follows from the theorem of Jarník and Knichal [2] that there is a complete set with only two elements. Mahavier proves in [4] that every complete set must have at least two elements and therefore two is the minimum number.

In this note, we prove the following:

Theorem. There exists a continuous function f of $[0, 1]$ into $[0, 1]$ such that $\{f, \frac{1}{2}f\}$ is complete.

First we will establish a lemma, the proof of which closely follows [2]. Let C denote the set of all continuous functions of $[0, 1]$ into $[0, 1]$. $e(x) = \frac{1}{2}x$, $e^{n+1}(x) = e(e^n(x))$ and $e^0(x) = x$.

Lemma. If $B_1, B_2 \in C$, then there exists $g \in C$ such that $g e g e^3 = B_1$ and $g e^2 g e^3 = B_2$.

Proof. Let g be defined as follows: $g(x) = 3 \cdot 2^{-2} + 2x$ for $0 \leq x \leq 2^{-3}$, $g(x) = \theta_2(16x - 3)$ for $3 \cdot 2^{-4} \leq x \leq 2^{-2}$, $g(x) = \theta_1(8x - 3)$ for $3 \cdot 2^{-3} \leq x \leq 2^{-1}$, and g is linear in each of the intervals $[2^{-3}, 3 \cdot 2^{-4}]$, $[2^{-2}, 3 \cdot 2^{-3}]$, and $[2^{-1}, 1]$. It is now easy to verify that $g e g e^3 = \theta_1$ and $g e^2 g e^3 = \theta_2$.

Proof of the theorem. It follows from the lemma and a remark made previously that there exists $g \in C$ such that $\{g e g e^3, g e^2 g e^3\}$ is complete. Thus if M is a chainable continuum, then M can be represented in the form $M \cong g e^{n_1} g e^{n_2} g e^{n_3} g e^{n_4} g e^{n_4} e^{n_5} \cdots$. The diagram arrows are omitted to save space. Each of the exponents n_i is 1 or 2. Let $f = e g e^3 g$ and then by regrouping the bonding maps and deleting the first map, we obtain $M \cong e^{n_i-1} e^{n_i-1} e^{n_i-1} e^{n_i-1} f \cdots$. Now for each i, $n_i - 1 = 0$ or 1 and so another regrouping yields $M \cong (a_1 f)(a_2 f) \cdots$ where for each i, $a_i = 1$ or $\frac{1}{2}$. This completes the proof.
It should be noted that \(\{g e g^3, g e^2 g^3\} \) is complete as a consequence of the fact that the collection of all finite compositions of these functions is dense in \(C \). The collection of all finite compositions of the functions \(f \) and \(\frac{1}{2} f \) is not dense in \(C \) since the range of \(f \) is a proper subinterval of \([0, 1] \).

References

3. R. F. Jolly and J. T. Rogers, Jr., Inverse limit spaces defined by only finitely many distinct bonding maps, Fund. Math. (to appear)