THE REPRESENTATION OF CHAINABLE CONTINUA
WITH ONLY TWO BONDING MAPS

SAM W. YOUNG

Definition. A set \(S \) of continuous functions of \([0, 1]\) into \([0, 1]\) is called a "complete" set of bonding maps if every chainable continuum can be obtained as the inverse limit of an inverse mapping system each of whose coordinate spaces is \([0, 1]\) and each of whose bonding maps is in \(S \).

It is shown in [1] that a dense set is complete. Jolly and Rogers in [3] demonstrate a complete set with only four elements. It follows from the theorem of Jarník and Knichal [2] that there is a complete set with only two elements. Mahavier proves in [4] that every complete set must have at least two elements and therefore two is the minimum number.

In this note, we prove the following:

Theorem. There exists a continuous function \(f \) of \([0, 1]\) into \([0, 1]\) such that \(\{f, \frac{1}{2}f\} \) is complete.

First we will establish a lemma, the proof of which closely follows [2]. Let \(C \) denote the set of all continuous functions of \([0, 1]\) into \([0, 1]\). \(e(x) = \frac{1}{2}x, e_{n+1}(x) = e(e_n(x)) \) and \(e^0(x) = x \).

Lemma. If \(B_1, B_2 \in C \), then there exists \(g \in C \) such that \(g e g e^3 = B_1 \) and \(g e^2 g e^3 = B_2 \).

Proof. Let \(g \) be defined as follows: \(g(x) = 3 \cdot 2^{-2} + 2x \) for \(0 \leq x \leq 2^{-3} \), \(g(x) = \theta_2(16x - 3) \) for \(3 \cdot 2^{-4} \leq x \leq 2^{-2} \), \(g(x) = \theta_1(8x - 3) \) for \(3 \cdot 2^{-3} \leq x \leq 2^{-1} \), and \(g \) is linear in each of the intervals \([2^{-3}, 3 \cdot 2^{-4}], [2^{-2}, 3 \cdot 2^{-3}] \), and \([2^{-1}, 1] \). It is now easy to verify that \(g e g e^3 = \theta_1 \) and \(g e^2 g e^3 = \theta_2 \).

Proof of the theorem. It follows from the lemma and a remark made previously that there exists \(g \in C \) such that \(\{g e g e^3, g e^2 g e^3\} \) is complete. Thus if \(M \) is a chainable continuum, then \(M \) can be represented in the form \(M \cong g^n e^3 g e^n_{q+1} g e^n_{q+2} g e^n_{q+3} \cdots \). The diagram arrows are omitted to save space. Each of the exponents \(n_i \) is 1 or 2. Let \(f = e g e^3 g \) and then by regrouping the bonding maps and deleting the first map, we obtain \(M \cong e^{-1} f e_n e^{-1} f e_n e^{-1} f \cdots \). Now for each \(i, n_i - 1 = 0 \) or 1 and so another regrouping yields \(M \cong (a_if)(a_{2f}) \cdots \) where for each \(i, a_i = 1 \) or \(\frac{1}{2} \). This completes the proof.

Received by the editors January 17, 1969.
It should be noted that $\{gege^3, ge^2ge^3\}$ is complete as a consequence of the fact that the collection of all finite compositions of these functions is dense in C. The collection of all finite compositions of the functions f and $\frac{1}{2}f$ is not dense in C since the range of f is a proper subinterval of $[0, 1]$.

References

University of Utah