NUCLEAR TOPOLOGIES CONSISTENT WITH A DUALITY

MICHAEL B. DOLLINGER

Let E be a (Hausdorff) locally convex space, and let E' be its dual space. A subset $B \subseteq E'$ is said to be prenuclear if there exist a $\sigma(E', E)$-closed equicontinuous subset $A \subseteq E'$ and a positive Radon measure μ on A such that for each $x \in E$,

$$\sup_{y' \in B} |\langle x, y' \rangle| \leq \int_A |\langle x, x' \rangle| \, d\mu(x').$$

Pietsch has shown that E is a nuclear space if and only if every equicontinuous subset of E' is prenuclear (see [1] or [3]). We shall use this result to characterize all nuclear topologies on a locally convex space which are consistent with a given duality. We refer the reader to [3] for the basic results and notation that we shall use.

We begin with a definition.

DEFINITION. Let E be a locally convex space, and let $B_0 \subseteq E'$. We shall say that B_0 is a hypernuclear set if there exists a sequence \(\{ (B_n, \mu_n) : n = 1, 2, \ldots \} \) where each B_n is a $\sigma(E', E)$-closed equicontinuous subset of E' and μ_n is a positive $\sigma(E', E)$-Radon measure on B_n such that for each $n \geq 1$ and each $x \in E$,

$$\sup_{y' \in B_{n-1}} |\langle x, y' \rangle| \leq \int_{B_n} |\langle x, x' \rangle| \, d\mu_n(x').$$

We shall say that the sequence \(\{ (B_n, \mu_n) : n = 1, 2, \ldots \} \) corresponds to the hypernuclear set B_0.

In the following proposition, we state some elementary properties of hypernuclear sets. The proof is fairly direct, and so it has been omitted.

Proposition 1. (a) Finite subsets of E' are hypernuclear.
(b) If A and B are hypernuclear and λ is a scalar, then $A \cup \lambda B$ is hypernuclear.
(c) If A is hypernuclear and $B \subseteq A$, then B is hypernuclear.
(d) If A is hypernuclear, then the $\sigma(E', E)$-closed convex circled hull of A is hypernuclear.
(e) If A is hypernuclear, then A is prenuclear and hence equicontinuous.

Received by the editors March 13, 1969.

565
(f) If B_0 is hypernuclear and $\{(B_n, \mu_n): n = 1, 2 \cdots\}$ is a corresponding sequence, then each B_n is also hypernuclear.

We remark here that the hypernuclear subsets of E' depend on the particular topology on E. Moreover, it follows from the theorem of Pietsch stated above that E is a nuclear space if and only if every equicontinuous subset of E' is hypernuclear.

Definition. Let E be a locally convex space. A family \mathcal{F} of hypernuclear subsets of E' is said to be a full family if the following conditions hold.

(a) $\bigcup \mathcal{F} = E'$.
(b) If $A, B \in \mathcal{F}$, then $A \cup \lambda B \in \mathcal{F}$ for all scalars λ.
(c) If $A \in \mathcal{F}$ and $B \subseteq A$, then $B \in \mathcal{F}$.
(d) If $A \in \mathcal{F}$, then the $\sigma(E', E)$-closed convex circled hull of A belongs to \mathcal{F}.
(e) If $B_0 \in \mathcal{F}$, then there is at least one corresponding sequence $\{(B_n, \mu_n): n = 1, 2, \cdots\}$ such that $B_n \in \mathcal{F}$ for all n.

In the theorems below, it will be important to distinguish among different topologies on the same space. By (E, ρ), we shall mean that the space E is being considered with the topology ρ.

Theorem 2. Let (E, ρ) be a locally convex space, and let \mathcal{F} be a full family of ρ-hypernuclear subsets of E'. Let $\rho_\mathcal{F}$ be the topology on E of uniform convergence on the members of \mathcal{F}. Then $(E, \rho_\mathcal{F})$ is a nuclear space having the same dual space as (E, ρ).

Proof. Since members of \mathcal{F} are all ρ-equicontinuous, we conclude that $(E, \rho_\mathcal{F})' = (E, \rho)'$. The $\rho_\mathcal{F}$-equicontinuous subsets of E' are just the members of \mathcal{F}, and so it suffices, by Pietsch's result, to show that each $B_0 \in \mathcal{F}$ is $\rho_\mathcal{F}$-prenuclear. Let $\{(B_n, \mu_n): n = 1, 2, \cdots\}$ be a ρ-corresponding sequence for B_0 such that $B_n \in \mathcal{F}$ for all n. Now μ_1 is a $\sigma((E, \rho_\mathcal{F})', E)$-Radon measure on the $\rho_\mathcal{F}$-equicontinuous set B_1, and hence B_0 is also $\rho_\mathcal{F}$-prenuclear.

In the following theorem, $\tau(E, F)$ will denote the Mackey topology on E, that is, the largest topology on E which is consistent with the duality $\langle E, F \rangle$.

Theorem 3. Let $\langle E, F \rangle$ be a duality. A topology ρ on E is consistent with the duality and makes E a nuclear space if and only if it is the topology of uniform convergence on some full family of $\tau(E, F)$-hypernuclear sets in F.

Proof. The "if" part is simply the previous theorem with $\rho = \tau(E, F)$.
Let ρ be a topology on E such that (E, ρ) is a nuclear space and $(E, \rho)' = F$. Then every member of the family \mathcal{F} of all ρ-equicontinuous subsets of F is ρ-hypernuclear. We claim that \mathcal{F} is a full family of $\tau(E, F)$-hypernuclear sets. Conditions (a)–(d) for \mathcal{F} are easily checked. Every ρ-equicontinuous set is $\tau(E, F)$-equicontinuous; and hence it follows that if $B_0 \subseteq \mathcal{F}$, then any ρ-corresponding sequence $\{(B_n, \mu_n): n = 1, 2, \ldots\}$ will also be $\tau(E, F)$-corresponding. Thus \mathcal{F} is also a full family of $\tau(E, F)$-hypernuclear sets.

It follows from the above results that the weak topology and the topology of uniform convergence on all $\tau(E, F)$-hypernuclear sets are respectively the weakest and strongest topologies on E which are consistent with the duality $\langle E, F \rangle$ and which make E a nuclear space.

We shall conclude with an example of a prenuclear set which is not hypernuclear.

Example. Let I be an uncountable index set. Let $l_1(I)$ and $l_2(I)$ be the collections of all families $\{x_\alpha: \alpha \in I\}$ of scalars such that $\sum_I |x_\alpha| < \infty$ and $\sum_I |x_\alpha|^2 < \infty$, respectively. These spaces become Banach spaces under the norms $\|\{x_\alpha\}\|_1 = \sum_I |x_\alpha|$ and $\|\{x_\alpha\}\|_2 = (\sum_I |x_\alpha|^2)^{1/2}$.

The identity map $i: l_1(I) \to l_2(I)$ is absolutely summing [2, p. 39]; or equivalently [2, p. 36], there is a positive $\sigma(l_1(I)', l_1(I))$-Radon measure μ on the unit ball M of $l_1(I)'$ such that for each $x \in l_1(I)$

$$\|x\|_2 \leq \int_M |\langle x, x' \rangle| \, d\mu(x').$$

Let B be the unit ball of $l_2(I)$, and consider B as a subset of $l_1(I)'$. Then for $y \in B$ and $x \in l_1(I)$,

$$|\langle x, y \rangle| \leq \|x\|_2 \|y\|_2 \leq \|x\|_2 \leq \int_M |\langle x, x' \rangle| \, d\mu(x').$$

Hence B is a prenuclear subset of $l_1(I)'$.

Now assume that B is a hypernuclear subset of $l_1(I)'$, and let ρ be the topology on $l_1(I)$ of uniform convergence on all hypernuclear subsets of $l_1(I)'$. Both of the injection maps j and k

$$(l_1(I), \| - \|_1) \xrightarrow{j} (l_1(I), \rho) \xrightarrow{k} (l_2(I), \| - \|_2)$$

can be seen to be continuous. By Theorem 2, $(l_1(I), \rho)$ is a nuclear space, and hence k is a nuclear map. Since the composition of a nu-
clear map with a continuous map is still nuclear, we conclude that $i = k \circ j$ is a nuclear map. But this is a contradiction since i is not even compact [2, p. 40]. Hence B cannot be hypernuclear.

REFERENCES

LOUISIANA STATE UNIVERSITY, BATON ROUGE