Kirby and Siebenmann have recently proved that every boundary-less topological \(n \)-manifold \((n \geq 5) \) having trivial 4-dimensional \(\mathbb{Z}_2 \)-cohomology can be given a combinatorial triangulation; they have also given an example of a topological manifold which supports no combinatorial triangulation. It is quite possible, however, that the manifold constructed might be triangulable by a complex which is not a combinatorial manifold. The main purpose of this note is to show that if this could be done in such a way that the open simplexes are locally flat, then either the 3- or the 4-dimensional Poincaré conjecture would be false. Let us call such a triangulation \textit{locally flat}; note that we do not require that the closed simplexes be locally flat. Then our main result is:

Theorem 3. Suppose \(n \geq 5 \). Then the 3- and 4-dimensional Poincaré conjectures together are equivalent to the conjecture that every locally flat triangulation of a topological \(n \)-manifold is combinatorial.

Let \(X \subset Y \) be metric spaces and suppose \(z \in X \). A monotone sequence \(V_1 \supset V_2 \supset \cdots \) of compact neighborhoods of \(z \) in \(Y \) is said to be a \textit{local homotopy} sequence for \(X \) at \(z \) in \(Y \) if \(\bigcap V_i = \{z\} \) and each inclusion \(V_i \setminus X \) into \(V_k \setminus X \) \((k < j)\) is a homotopy equivalence. If such a neighborhood sequence exists, then the homotopy type of \(V_1 \setminus X \) is called the \textit{local homotopy type} of \(X \) at \(z \) in \(Y \); that the local homotopy type is independent of the choice of defining sequence may be seen as follows: if \(U_i \) is another such sequence, we may find integers \(p, q, r \) such that \(U_r \subset V_q \subset U_p \subset V_1 \). The inclusions form a commutative diagram as follows:

\[
\begin{array}{ccc}
U_p \setminus X & \xrightarrow{\alpha'} & U_p \setminus X \\
\beta' \downarrow & & \downarrow \beta \\
V_q \setminus X & \xrightarrow{\gamma} & V_1 \setminus X \\
\end{array}
\]

Since \(\alpha' \) and \(\alpha \) are homotopy equivalences, with homotopy inverses

Received by the editors April 14, 1969.

1 The author was partially supported by the National Science Foundation, Grant 8615.
\(a'\) and \(\alpha, \beta'\alpha'\) is a right homotopy inverse for \(\gamma\) and \(\alpha\beta\) is a left homotopy inverse for \(\gamma\). Hence \(\gamma\) is a homotopy equivalence.

There are two instances of importance to us where the local homotopy type is defined:

Proposition 1. The local homotopy type of \(X\) at \(z\) in \(Y\) is well defined if

(i) \(X\) is a \(k\)-manifold in the \(n\)-manifold \(Y\), and \(X\) is locally flat at \(z\); the local homotopy type is that of the \((n-k-1)\)-sphere;

(ii) \(z\) is an interior point of a simplex \(X\) in a complex \(Y\); the local homotopy type is the homotopy type of the link of \(X\) in \(Y\), \(\text{lk}(X, Y)\).

Corollary 1. If \(\sigma^k\) is a simplex of a locally flat triangulation of a topological \(n\)-manifold, then \(\text{lk}(\sigma, K)\) has the homotopy type of \(S^{n-k-1}\).

Part (i) of the proposition reduces to the case \(X = \mathbb{R}^k\), \(Y = \mathbb{R}^n\), \(z = \text{origin}\), and we then define \(V_i\) to be the ball of radius \(1/i\) about \(Z\); \(V_i \setminus \mathbb{R}^k\) then deforms to \(S^{n-1} \setminus S^{k-1}\), which has the homotopy type of \(S^{n-k-1}\).

For part (ii), \(V_1 = \text{st}(X, Y)\) and \(V_i = \text{st}(\sigma, Y^{(i)})\), where \(Y^{(i)}\) is an \(i\)th derived subdivision of \(Y\), with \(X\) originally starred at \(z\). In this case, \(V_1 \setminus X = \text{st}(X, Y) \setminus X\) deformation retracts to \(\text{lk}(X, Y)\).

The corollary then follows from (i) and (ii) by considering the local homotopy type of \(\sigma\) at its barycenter.

Theorem 1. The Poincaré conjectures imply that every locally flat triangulation of a topological manifold is combinatorial.

Proof. Assume the Poincaré conjectures, and let \(K\) be a triangulation of a topological \(n\)-manifold. Let \(\sigma^k\) be a simplex of maximal dimension such that \(\text{lk}(\sigma, K)\) is not PL homeomorphic to \(S^{n-k-1}\). If such a simplex exists, then \(\text{lk}(\sigma, K)\) must be a combinatorial manifold: if \(\text{lk}(\sigma, K)\) fails to be combinatorial at a vertex \(v\), then \(\text{lk}(v, K) = \text{lk}(v, \text{lk}(\sigma, K))\) is not a PL-sphere, violating the maximality of \(\sigma\). Thus, by Corollary 1, \(\text{lk}(\sigma, K)\) is a homotopy sphere, and hence, by the Poincaré conjecture, a sphere. In other words, there was no such simplex \(\sigma\), so that \(K\) is combinatorial.

Lemma 1. If \(K\) is combinatorial at \(\sigma\), then \(\text{int} \sigma\) is locally flat.

Proof. The pair \((\text{st}(\sigma, K), \sigma)\) is an unknotted ball pair.

Lemma 2. If \(K\) triangulates a topological \(n\)-manifold, then \(\sigma\) is combinatorial at simplexes of dimension \(k \geq n-3\).

Proof. For each simplex \(\sigma\) of \(K\), \(\text{lk}(\sigma, K)\) must be a pseudomani-
fold with the homology of a sphere; if \(\dim \sigma \geq n - 3 \), then \(\dim(\text{lk}(\sigma, K)) \leq 2 \), and it is well known that \(\text{lk}(\sigma, K) \) must then be a sphere.

Theorem 2. If either the 3-dimensional, or the 4-dimensional Poincaré conjecture is false, then there are locally flat noncombinatorial triangulation of \(S^n \) for all \(n \geq 5 \), and hence for all combinatorial \(n \)-manifolds, \(n \geq 5 \).

Proof. We need only show that there would be a locally flat noncombinatorial triangulation of \(S^6 \), since suspension of a locally flat triangulation gives a locally flat triangulation (recall that “locally flat” means locally flat on open simplexes.) If the 4-dimensional Poincaré conjecture fails, the suspension of a fake 4-sphere is a topological 5-sphere (see, for example, [2]), yielding a noncombinatorial triangulation of \(S^6 \). Since vertices are automatically locally flat, and since such a triangulation would be combinatorial at all other simplexes, it would be a locally flat triangulation. If the 3-dimensional Poincaré conjecture were false, there would be a fake 3-sphere \(M^3 \) whose double suspension \(S^1 \ast M^3 \) is a topological 5-sphere [2]. If \(K \) triangulates \(M^3 \), and \(L \) triangulates \(S^1 \), then the join \(L \ast K \) would be a noncombinatorial triangulation of \(S^6 \). \(L \ast K \) would be combinatorial at all simplexes except those belonging to \(L \). Let \(\sigma^1 \) be an arbitrary simplex of \(L \), and let \(x \) be an interior point of \(\sigma^1 \). Then the local homotopy type of \(S^1 \) at \(x \) in \(S^6 = S^1 \ast M^3 \) is just the homotopy type of \(M^3 \), which is simply connected. As a consequence, the circle \(S^1 \) is \(1 - LC \) at \(x \); the local homotopy type of \(S^1 \) at a vertex \(v \) is the homotopy type of \(S^0 \ast M^3 \), which is also simply connected. Thus \(S^1 \) is a locally nicely imbedded 1-sphere in \(S^6 \), and hence is flat, [1, Theorem 4.2]. Thus \(L \ast K \) is a locally flat, noncombinatorial triangulation of \(S^6 \).

References

University of Georgia