ON GROUPS OF ORDER $2^a 3^b p^c$ WITH A CYCLIC SYLOW 3-SUBGROUP

MARCEL HERZOG

The fundamental classification of N-groups by Thompson in [7]¹ yields, among others, the following result: if the order of a nonsolvable finite group is divisible by three primes only, then the primes are: 2, 3 and one from the set \{5, 7, 13, 17\}. Thus the problem of classification of all simple groups of order $r^a q^b p^c$, r, q and p primes, reduces to the classification of simple groups of order mentioned in the title.

In [1] Brauer solved this problem for the case $p^c = 5$. The author showed in [5] that if one of the Sylow groups of G is cyclic and if it is not the Sylow subgroup of G of least order, then G is isomorphic to one of the groups: $PSL(2, 5)$, $PSL(2, 7)$, $PSL(2, 8)$ and $PSL(2, 17)$. The purpose of this paper is to classify all simple groups of order $2^a 3^b p^c$ with a cyclic Sylow 3-subgroup.

Theorem 1. Let G be a simple group of order $2^a 3^b p^c$, where p is a prime, and suppose that a Sylow 3-subgroup Q of G is cyclic. Then G is isomorphic to one of the groups: $PSL(2, 5)$, $PSL(2, 7)$, $PSL(2, 8)$ and $PSL(2, 17)$.

As a matter of fact, we will prove the following more general result:

Theorem 2. Let G be a simple group of order $2^a 3^b p^c$, where p is a prime. Suppose that a Sylow subgroup R of G is cyclic and $[N_G(R) : C_G(R)] = 2$. Then G is isomorphic to one of the groups: $PSL(2, 5)$, $PSL(2, 7)$, $PSL(2, 8)$, $PSL(2, 9)$ and $PSL(2, 17)$.

Theorem 1 follows easily from Theorem 2. Indeed, it is well known that $[N_G(Q) : C_G(Q)] = 1$ or 2. It follows from the simplicity of G and the theorem of Burnside that $[N_G(Q) : C_G(Q)] = 2$. Thus the assumptions of Theorem 2 are satisfied and it is well known that the groups mentioned in Theorem 2, $PSL(2, 9)$ excluded, satisfy the assumptions of Theorem 1.

Proof of Theorem 2. Let R be a Sylow r-subgroup of G of order r^b. Since G is simple $r \neq 2$ and $2^a \geq 4$. It follows from Proposition 2.1 and Corollary 2.1 in [4] that the principal r-block B_1 of G contains $(r^b - 1)/2$ exceptional characters of order $x_0 = a_0 r^b - 2 e_0$ and two non-exceptional (ordinary) characters: the principal character 1_G and

Received by the editors March 21, 1969.
¹ This work is under revision by its author.
another character X_2 of order $x_2 = a_2 r^5 + \epsilon_2$, where a_0, a_2 are nonnegative integers and $\epsilon_0, \epsilon_2 = \pm 1$. Formula (6) in [4] then yields:

$$0 = 1 + \epsilon_0 x_0 + \epsilon_2 x_2 = 1 + \epsilon_0 a_0 r^5 - 2 + \epsilon_2 a_2 r^5 + 1.$$

Therefore $a_0 = a_2$, $\epsilon_2 = -\epsilon_0$ and consequently

$$x_0 = a_0 r^5 - 2\epsilon_0, \quad x_2 = a_0 r^5 - \epsilon_0.$$

Thus x_0, r and x_2 are prime to each other, and it follows from our assumptions that one of the following cases holds:

Case A: $x_0 = 2^r$, $x_2 = u^r$,

Case B: $x_0 = u^r$, $x_2 = 2^r$,

where \{u, r\} = \{3, p\} and ν, η are positive integers. In both cases it follows from the formulas for x_0 and x_2 that

$$u^r - 2^r = \epsilon, \quad \epsilon = \pm 1.$$

If $\eta = 1$ then it is well known [3, Theorem 18.4] that u is the order of a Sylow u-subgroup of G. Consequently, all the Sylow subgroups of odd order of G are cyclic and by Theorem 1 of [4] G is isomorphic to one of the groups: $\text{PSL}(2, 5)$, $\text{PSL}(2, 7)$, $\text{PSL}(2, 8)$ and $\text{PSL}(2, 17)$. Since these groups satisfy the assumptions of Theorem 2, we are done in the case $\eta = 1$.

Now assume that $\eta > 1$. Then by [6, Theorem 2, p. 335 and Exercise 1, p. 346] $u = 3, \eta = 2, \nu = 3$ and $\epsilon = 1$. We will deal now separately with Cases A and B.

Case A. It follows from the formulas for x_0 and x_2 that:

$$8 = x_0 = a_0 r^5 - 2\epsilon_0, \quad 9 = x_2 = x_0 + \epsilon_0$$

hence: $r^5 = 5$. It follows then from [1] that G is isomorphic either to $\text{PSL}(2, 5)$ or to $\text{PSL}(2, 9)$. Since the order of $\text{PSL}(2, 5)$ is not divisible by 9, only $\text{PSL}(2, 9)$ satisfies the assumptions of Case A.

Case B. The formulas for x_0 and x_2 now yield:

$$9 = x_0 = a_0 r^5 - 2\epsilon_0, \quad 8 = x_2 = x_0 + \epsilon_0$$

hence $r^5 = 7$. Thus B_1 contains the irreducible character X_2 of degree $8 < 2r = 14$ and by Lemma 1 of [2] $C_G(\rho) = R$ for every nonidentity element ρ of R. Consequently, every r-singular element of G is of order r. Lemma 3 of [2] then yields that if B_2 is the 2-block to which X_2 belongs then:

$$\sum X(1) X(\rho) \equiv 0 \pmod{2^n} \quad X \text{ in } B_1 \cap B_2$$

where ρ is any r-singular element of G. Since by Lemma 2 of [2] B_1
is a block of defect $\alpha - 1$ at most, it contains characters of even orders only and therefore $B_1 \cap B_2 = \{ X_2 \}$. As ρ is conjugate to an element of R^\sharp, it follows from Proposition 2.1 of [4] that
\[X_2(\rho) = \epsilon_2 = - \epsilon_0 = 1. \]
The above summation formula then reads:
\[s = x_2 \cdot 1 \equiv 0 \pmod{2^\alpha}. \]
Since x_2 divides $o(G)$, the order of G, it follows that $2^\alpha = 8$ and
\[o(G) = 7 \cdot 8 \cdot 3^\beta, \quad \beta \geq 2. \]

Let T be a Sylow 2-subgroup of G. It is well known that T cannot be the quaternion group. If T is dihedral or Abelian, then by Theorem 2 in [5] G has to be isomorphic to one of the groups $\text{PSL}(2, 5)$, $\text{PSL}(2, 7)$, $\text{PSL}(2, 8)$, $\text{PSL}(2, 9)$ and $\text{PSL}(2, 17)$. It is easy to check that only $\text{PSL}(2, 8)$ has order of the form $7 \cdot 8 \cdot 3^\beta$, $\beta \geq 2$, and consequently only $\text{PSL}(2, 8)$ satisfies the assumptions of Case B. The proof of Theorem 2 is complete.

References

1. R. Brauer, On simple groups of order $5 \cdot 3^a \cdot 2^2$, Bull. Amer. Math. Soc. 74 (1968), 900-903.
4. M. Herzog, On finite groups with cyclic Sylow subgroups for all odd primes, Israel J. Math. 6 (1968), 206-216.
5. ———, On finite simple groups of order divisible by three primes only, J. Algebra 10 (1968), 383-388.
7. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Sec. 1-6, Bull. Amer. Math. Soc. 74 (1968), 383-437 (balance to appear).