ON ABSOLUTE BOREL-TYPE METHODS OF SUMMABILITY

D. BORWEIN

1. Introduction. Suppose throughout that \(l, a_n \) \((n = 0, 1, \ldots)\) are arbitrary complex numbers, that \(\lambda > 0 \) and \(\mu \) is real, and that \(N \) is a nonnegative integer such that \(\lambda N + \mu \geq 1 \). Let \(s_{-1} = 0, s_n = \sum_{r=0}^{n} a_r; \)

\[
a_{\lambda, \mu}(x) = \sum_{n=N}^{\infty} \frac{a_n x^{\lambda n + \mu - 1}}{\Gamma(\lambda n + \mu)}, \quad s_{\lambda, \mu}(x) = \sum_{n=N}^{\infty} \frac{s_n x^{\lambda n + \mu - 1}}{\Gamma(\lambda n + \mu)}. \]

Borel-type methods of summability are defined as follows: The series \(\sum_{n=0}^{\infty} a_n \) is said to be

(i) summable \((B, \lambda, \mu)\) to \(l \), if \(s_{\lambda, \mu}(x) \) is finite for all \(x \geq 0 \) and \(\lambda e^{-x} s_{\lambda, \mu}(x) \rightarrow l \) as \(x \rightarrow \infty \);

(i)' summable \((B', \lambda, \mu)\) to \(l \), if \(a_{\lambda, \mu}(x) \) is finite for all \(x \geq 0 \) and \(\int_{0}^{y} e^{-x} a_{\lambda, \mu}(x) dx + s_{N-1} \rightarrow l \) as \(y \rightarrow \infty \);

(ii) absolutely summable \((B, \lambda, \mu)\), or summable \(|B, \lambda, \mu|\), to \(l \), if the series is summable \((B, \lambda, \mu)\) to \(l \) and \(e^{-x} s_{\lambda, \mu}(x) \) is of bounded variation on \([0, \infty)\);

(ii)' absolutely summable \((B', \lambda, \mu)\), or summable \(|B', \lambda, \mu|\), to \(l \), if the series is summable \((B, \lambda, \mu)\) to \(l \) and \(\int_{0}^{y} e^{-x} a_{\lambda, \mu}(x) dx \) is of bounded variation on \([0, \infty)\).

Note that the methods \((B, 1, 1)\) and \((B', 1, 1)\) are respectively equivalent to the standard Borel exponential and integral methods \(B \) and \(B' \).

The object of this paper is to establish the following absolute summability analogue of a known inclusion theorem for ordinary Borel-type summability ([2, Result 1] and [1, Theorem 2]; see also [4]):

Theorem. If \(\alpha > \lambda \), the series \(\sum_{n=0}^{\infty} a_n \) is summable \(|B', \alpha, \beta|\) to \(l \), and \(a_{\lambda, \mu}(x) \) is finite for all \(x \geq 0 \), then the series is summable \(|B', \lambda, \mu|\) to \(l \).

It is known that [1, Lemma 4] \(a_{\lambda, \mu}(x) \) is finite for all \(x \geq 0 \) if and only if \(s_{\lambda, \mu}(x) \) is finite for all \(x \geq 0 \); and that [3, Theorem 17] a series is summable \(|B', \lambda, \mu|\) to \(l \) if and only if it is summable \(|B, \lambda, \mu + 1|\) to \(l \). Hence \("B'" \) may be replaced by \("B" \) in the theorem.

2. Preliminary results.

Lemma 1. If \(\delta > 0 \) and a series is summable \(|B', \alpha, \beta|\) to \(l \) then it is

Received by the editors January 20, 1969.
summable \(|B', \alpha, \beta \pm \delta| \) to 1.

This lemma is known \([5]\).

Lemma 2. If \(\alpha > \lambda \) and \(\beta / \alpha \geq \mu / \lambda \), then there is a function \(\psi \), continuous on \((0, \infty)\), such that

\[
\frac{\Gamma(\alpha n + \beta)}{\Gamma(\lambda n + \mu)} = \int_0^\infty t^n \psi(t) \, dt \quad (n \geq N),
\]

\[
\int_0^\infty t^n |\psi(t)| \, dt = O\left(\frac{\Gamma(\alpha n + \beta)}{\Gamma(\lambda n + \mu)}\right) \quad (n \geq N),
\]

and, for any \(\delta > 0 \),

\[
u^{(\alpha - \lambda)} \psi(u^{\alpha - \lambda}) = O(e^{-\rho u}(u^{\lambda/2} + u^{-\sigma - \delta})) \quad (0 < u < \infty)
\]

where \(\rho = 1 - (\beta - \mu)/(\alpha - \lambda) \), \(\sigma = \beta - \alpha \mu / \lambda \), \(k = ((\alpha - \lambda)/\lambda)(\lambda/\alpha)^{(a-\lambda)} \).

Proof. Let \(h(s) = \Gamma(\alpha s + \beta)/\Gamma(\lambda s + \mu) \). Then by Stirling's theorem (see \([2, p. 129]\)), there is a positive constant \(C \) such that

\[
h(s) = e^{(\alpha \log \alpha - \log \alpha + \lambda) s + \beta - \mu}(C + O(1/|s|))
\]

when \(|s| \) is large and \(\Re s > -\mu / \lambda \). Since \(N > -\mu / \lambda \), it follows from the proof of Lemma 4 in \([2]\), with \(\sigma_0 = -\mu / \lambda \), \(\nu = N \), that there is a function \(\phi \), continuous on \((0, \infty)\), such that

\[
h(n) = \int_0^\infty t^{n-N} \phi(t) \, dt \quad (n \geq N);
\]

\[
\int_0^\infty t^{n-N} |\phi(t)| \, dt = O(h(n)) \quad (n \geq N);
\]

\[
t^{-N} \phi(t) = O(t^{\mu/\lambda - \delta/(\alpha - \lambda)}) = O(t^{-(\sigma + \delta)/(\alpha - \lambda)}) \quad \text{as} \quad t \to 0+;
\]

and

\[
t^{-N} \phi(t) \sim Ke^{-k t^{1/(\alpha - \lambda)} t^{-\rho + 1/2(\alpha - \lambda)}} \quad \text{as} \quad t \to \infty,
\]

where \(K \) is a positive constant.

Putting \(\psi(t) = t^{-N} \phi(t) \), we obtain the conclusions of Lemma 2.

3. **Proof of the theorem.** Let

\[
\gamma = \alpha / \lambda, \quad \rho = 1 - (\beta - \mu)/(\alpha - \lambda), \quad \sigma = \beta - \gamma \mu,
\]

\[
k = (\gamma - 1) \gamma^{\gamma/(1-\gamma)}, \quad \delta = (\gamma - 1)^2 / \gamma.
\]

By Lemma 1, we may suppose, without loss in generality that \(\beta \geq \gamma \mu \), i.e. that \(\sigma \geq 0 \).
The main hypotheses of the theorem are that

\[(4) \quad \int_0^\infty e^{-y} | a_{\alpha,\beta}(y) | \, dy < \infty, \]

and that

\[(5) \quad a_{\lambda,\mu}(x) \text{ is finite for all } x \geq 0. \]

Let \(\psi \) be the function specified in Lemma 2. Then, for \(0 < x < \infty \),

\[a_{\lambda,\mu}(x) = \sum_{n=N}^\infty \frac{a_n x^{\lambda n + \mu - 1}}{\Gamma(\alpha n + \beta)} \frac{\Gamma(\alpha n + \beta)}{\Gamma(\lambda n + \mu)} \int_0^\infty t^n \psi(t) \, dt \]

\[= x^{\mu - 1 + (1 - \beta)/\gamma} \int_0^\infty t^{(1 - \beta)/\alpha} \psi(t) \, dt \sum_{n=N}^\infty \frac{a_n (x^{1/\gamma} t^{1/\alpha})^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)} \]

\[= x^{\mu - 1 + (1 - \beta)/\gamma} \int_0^\infty t^{(1 - \beta)/\alpha} \psi(t) a_{\alpha,\beta}(x^{1/\gamma} t^{1/\alpha}) \, dt, \]

the inversion of sum and integral being legitimate since, by (2), there is a constant \(M \) such that

\[\sum_{n=N}^\infty \left| \frac{a_n}{\Gamma(\alpha n + \beta)} \right| \int_0^\infty t^n \left| \psi(t) \right| \, dt < M \sum_{n=N}^\infty \left| \frac{a_n}{\Gamma(\lambda n + \mu)} \right| x^{\lambda n + \mu - 1}, \]

which is finite by (5).

Substitute \(t = x^{-\lambda} y^{\alpha}, \, dt = \alpha x^{-\lambda} y^{\alpha - 1} \, dy \) in the final integral in (6) to get

\[a_{\lambda,\mu}(x) = \alpha x^{\mu - 1 - \lambda} \int_0^\infty y^{\alpha - \beta} a_{\alpha,\beta}(y) \psi(x^{-\lambda} y^{\alpha}) \, dy \quad (0 < x < \infty), \]

and hence

\[\int_0^\infty e^{-x} \left| a_{\lambda,\mu}(x) \right| \, dx \]

\[\leq \alpha \int_0^\infty \left| a_{\alpha,\beta}(y) \right| y^{\alpha - \beta} \, dy \int_0^\infty e^{-x y^{\alpha - \lambda}} \left| \psi(x^{-\lambda} y^{\alpha}) \right| \, dx. \]

Now substitute \(x = y^{1/\gamma - 1}, \, dx = (\gamma - 1) y^{1/\gamma - 2} \, dy \) in the inner integral on the right-hand side of (7) to get

\[\int_0^\infty e^{-x} \left| a_{\lambda,\mu}(x) \right| \, dx \]

\[\leq \alpha (\gamma - 1) \int_0^\infty \left| a_{\alpha,\beta}(y) \right| \, dy \int_0^\infty e^{-y^{1/\gamma - 1 - \sigma - 1} (y^{1/\gamma - \lambda} \sigma^{\lambda})} \left| \psi((y^{1/\gamma - \lambda} \sigma^{\lambda}) \right| \, dv. \]
Consequently, by (3), there is a constant M_1 such that
\begin{equation}
\int_0^\infty e^{-x} | a_{\lambda, \mu}(x) | \, dx \leq M_1 \int_0^\infty e^{-\nu} | a_{\alpha, \beta}(\nu) | \, I(\nu) \, d\nu
\end{equation}
where
\[I(\nu) = \int_0^\infty e^{-(\nu^\gamma - \nu^k)\nu^q} \left\{ \left(\frac{\nu}{\nu^\gamma} \right)^{1/2} + \left(\frac{\nu}{\nu^\gamma} \right)^{-\delta} \right\} \nu^{\nu^\gamma - 1} \, d\nu. \]

Let $f(\nu) = \nu^\gamma - \nu^k, \ c = \gamma^{1/(1-\gamma)}$. Then $f(c) = f'(c) = 0, f(\nu) > 0$ when $\nu > 0, \ \nu \neq c$, and
\[f(\nu)/(\nu - c)^2 \to f''(c)/2 = \gamma(\gamma - 1)\nu^{\gamma - 2}/2 \quad \text{as} \quad \nu \to c. \]

Hence there are positive constants $\rho, \ q, \ r$ such that
\[f(\nu) \geq \rho, \ \nu^{-\gamma}f(\nu) \geq q \quad \text{when} \ 0 < \nu < c/2 \quad \text{or} \quad \nu > 3c/2; \]
and $f(\nu) \geq rv(\nu - c)^2$ when $c/2 < \nu < 3c/2$.

It follows that, for $y > 0$,
\begin{align*}
I(y) & \leq y^{1/2} \int_{c/2}^{3c/2} e^{-r(\nu^c - \nu^k)^2/\nu} \nu^{\nu^c - 3/2} \, d\nu + y^{1/2} \int_0^\infty e^{-\rho\nu^{1/2}} \nu^{\nu^c - 3/2} \, d\nu \\
& \quad + y^{-\delta} \int_{c/2}^{3c/2} \nu^{\theta - 1}\nu^{\nu^c} \nu^{\nu^c - 3/2} \, d\nu + y^{-\delta} \int_0^\infty e^{-\rho\nu^{1/2}} \nu^{\nu^c - 3/2} \, d\nu \\
& \leq 2 \left(\frac{c}{2} \right)^{-\delta - 3/2} y^{1/2} \int_{c/2}^{3c/2} \nu^{\nu^c} \, d\nu + y^{-\delta} \int_0^\infty e^{-\rho\nu^{1/2}} \nu^{\nu^c - 3/2} \, d\nu \\
& \quad + y^{-\delta} \left(\frac{3c}{2} \right)^{\delta - 1} + y^{-\delta} \delta/(\gamma - 1) \int_0^\infty e^{-\rho\nu^{1/2}} \nu^{\nu^c - 3/2} \, d\nu \\
& \leq M_2(1 + y^{-\delta} + y^{-\delta - \gamma + 1} + y^{-\delta - \gamma + 1})
\end{align*}
where M_2 is a constant; i.e.
\begin{equation}
I(y) = O(1) \quad (1 \leq y < \infty),
\end{equation}
and, since $\delta = (\gamma - 1)^2/\gamma < \gamma - 1$,
\begin{equation}
I(y) = O(y^{-\delta - \gamma + 1}) \quad (0 < y < 1).
\end{equation}

In virtue of (10), we have
\begin{align*}
I(y)a_{\alpha, \beta}(y) & = I(y) \sum_{n=N}^\infty \frac{a_n y^{\alpha n + \beta - 1}}{\Gamma(\alpha n + \beta)} \\
& = O(y^{-\delta - \gamma + 1 + \alpha N + \beta - 1}) = O(y^{\gamma(\alpha N + \beta - 1)}), \\
& = O(1) \quad (0 < y < 1).
\end{align*}
It follows from (4), (9) and (11) that
\[
\int_0^\infty e^{-y} |a_{\alpha,\beta}(y)| I(y) dy < \infty.
\]
Consequently, by (8),
\[
\int_0^\infty e^{-x} |a_{\lambda,\mu}(x)| dx < \infty,
\]
i.e. \(\sum_0^\infty a_n\) is summable \(|B, \lambda, \mu|\).

Further, by the inclusion theorem for ordinary Borel-type summability referred to in §1, the \(|B, \lambda, \mu|\) sum of the series \(\sum_0^\infty a_n\) is the same as its \(|B, \alpha, \beta|\) sum. This completes the proof.

References

University of Western Ontario