On absolute Borel-type methods of summability
HTML articles powered by AMS MathViewer
- by D. Borwein
- Proc. Amer. Math. Soc. 24 (1970), 85-89
- DOI: https://doi.org/10.1090/S0002-9939-1970-0249866-X
- PDF | Request permission
References
- D. Borwein, Relations between Borel-type methods of summability, J. London Math. Soc. 35 (1960), 65–70. MR 116163, DOI 10.1112/jlms/s1-35.1.65
- D. Borwein, On methods of summability based on integral functions. II, Proc. Cambridge Philos. Soc. 56 (1960), 125–131. MR 116162
- David Borwein and Bruce Lockhart Robertson Shawyer, On Borel-type methods, Tohoku Math. J. (2) 18 (1966), 283–298. MR 212440, DOI 10.2748/tmj/1178243418
- I. J. Good, Some relations between certain methods of summation of infinite series, Proc. Cambridge Philos. Soc. 38 (1942), 144–165. MR 6383, DOI 10.1017/s0305004100021836
- B. L. R. Shawyer, On the relation between the Abel and Borel-type methods of summability, Proc. Amer. Math. Soc. 22 (1969), 15–19. MR 243228, DOI 10.1090/S0002-9939-1969-0243228-9
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 85-89
- MSC: Primary 40.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0249866-X
- MathSciNet review: 0249866