ON EMBEDDING OF LATTICES BELONGING TO
THE SAME GENUS

H. JACOBINSKI

Abstract. If R is an order in a semisimple algebra over a
Dedekind ring and M, N two R-lattices in the same genus, an up-
per bound for the length of the composition series of M/N' for
$N'\cong N$, is given. This answers a question posed by Roiter.

Let \mathfrak{o} be a Dedekind-ring whose quotient field k is an algebraic
number field, A a semisimple algebra over k, and R an \mathfrak{o}-order in A. Two R-lattices M, N belong to the same genus Γ if $M_p=N_p$ for all
primes p in \mathfrak{o}. In [2] Roiter posed the question whether every $X\in\Gamma$ is isomorphic to a maximal sublattice of M. The theorem below
answers this question to the affirmative if A is simple, to the negative
otherwise.

We will use notations and results from Jacobinski [1], which will
be quoted as GD. Let M and N be in the same genus and $N\subseteq M$. We
denote by $l_R(M/N)$ the length of a composition series of M/N as
R-module. Clearly N is a maximal sublattice if and only if $l(M/N)
=1$. (For the definition of l_R see GD, Definition 1.3, p. 5.)

Theorem. Let \mathfrak{o} be a Dedekind ring whose quotient field k is an alge-
braic number field and R an \mathfrak{o}-order in the semisimple k-algebra $A =
\bigoplus A_i$, with A_i simple. Let M be an R-lattice in \mathfrak{o}_k and let t_M be the
number of the algebras A_i for which $A_i\otimes_{\mathfrak{o}} M \neq 0$. Then every lattice in
the genus $\Gamma(M)$ is isomorphic to a lattice $N\subseteq M$ such that

$l_R(M/N) \leq t_M$.

Moreover N can be chosen such that the annihilator of M/N is prime to
an ideal d in \mathfrak{o}, given in advance.

Proof. Let $U \neq \emptyset$ be a finite set of primes containing all p such
that R_p is not a maximal order and also all primes dividing the given
ideal d (see GD, p. 11). We embed R in a maximal order \mathfrak{O} and choose
a two-sided \mathfrak{O}-ideal \mathfrak{F}, contained in R. For convenience we suppose
that $\mathfrak{F}_p \neq \mathfrak{O}_p$ if and only if $p \in U$. As in GD, let $E(M), E(\mathfrak{O}M)$ denote
the endomorphism-rings of M and $\mathfrak{O}M$ respectively.
We replace Γ by the subset S of all $N \subset M$, such that the annihilator of M/N is not divisible by any prime of U. Every element of Γ is isomorphic to some $N \in S$, (GD, Proposition 2.1) and we have to find an $N \in S$ such that $l_R(M/N) \leq t_M$. Let a be an integral left $E(\mathfrak{O}M)$-ideal such that $a_p = (1)$ for all $p \in U$. Then $M_a = M \cap \mathfrak{O}Ma$ is in S, and conversely, every element N of S determines a unique ideal a such that $N = M_a$ (GD, Proposition 21). This means that

$$\phi: a \rightarrow M \cap \mathfrak{O}Ma$$

is a 1-1 correspondence between integral $E(\mathfrak{O}M)$-ideals with $a_p = (1)$, $p \in U$ and the elements of S. Since ϕ also preserves inclusions we have

$$l_R(M/N) = l_E(\mathfrak{O}M)(E(\mathfrak{O}M)/a).$$

The reduced norm $n(a)$ is an integral ideal in e_MC, the center of $E(\mathfrak{O}M)$ (see GD, p. 4). Clearly $n(a)$ is not divisible by any $p \in U$; moreover every such ideal in e_MC is obtained as $n(a)$, with $a_p = (1)$ for all $p \in U$. Now the multiplicativity of the reduced norm implies that

$$l_E(\mathfrak{O}M)(E(\mathfrak{O}M)/a) = l_{e_M}(e_MC/n(a)).$$

If we replace a by an ideal b, such that $n(b) \in n(a)S_{\mathfrak{F}}(e_M)$, then the corresponding lattices N and V are isomorphic (GD, Lemma 2.6 and Theorem 2.2).

Let e_i denote the primitive central idempotents in A. Then we have

$$n(a)S_{\mathfrak{F}}(e_M) = \bigoplus_{e_i, M \neq 0} n(e_i a) \cdot S_{\mathfrak{F}}(e_i).$$

According to the generalized version of Dirichlet’s theorem on arithmetic progressions, we can find a prime ideal p_i in each $n(e_i a)S_{\mathfrak{F}}(e_i)$. If then we choose b such that

$$n(b) = \bigoplus_{e_i, M \neq 0} p_i,$$

the corresponding lattice V is isomorphic to N and

$$l_R(M/V) = l_{e_M}(e_MC/b) = t_M,$$

which completes the proof.

We now turn to the question whether the inequality in the theorem can be improved. For a particular genus Γ with $S_{\mathfrak{F}}(e_\Gamma) \neq H_\Gamma$, one sees from the proof that this may easily be the case. Moreover we have taken into account only lattices $N \subset M$ such that the annihilator of M/N is prime to \mathfrak{F}. Nevertheless the bound given is best possible, if
no special assumptions are made about the order R or the genus Γ. To see this choose A such that every maximal order $e_i\mathcal{O}$ has class number >1; for this it is sufficient that all e_iC have class number >1.

Let e be a central idempotent in A and put $M = \mathcal{O}e$. Then the genus $\Gamma(M)$ consists of all full fractionary ideals \mathfrak{A} in $\mathcal{O}e$. Now choose an integral ideal $\mathfrak{A}\subseteq\mathcal{O}e$, such that no $e_i\mathfrak{A}$ is principal for $e_i\mathfrak{A}\neq 0$. If $\mathfrak{B}\subseteq\mathfrak{A}$, then each $e_i\mathfrak{B}\neq e_i\mathcal{O}$ since the $e_i\mathfrak{B}$ are not even principal. This implies that $l_\mathfrak{O}(M/\mathfrak{B}) \geq t_M$ for every $\mathfrak{B}\subseteq\mathfrak{A}$. Thus the constant t_M cannot in general be improved.

References

Chalmers University of Technology, Göteborg and University of Illinois