BOUNDEDNESS AND DIMENSION FOR WEIGHTED AVERAGE FUNCTIONS

DAVID P. STANFORD

Abstract. The paper considers a weighted average property of the type \(u(x_0) = \frac{\int_B uwdx}{\int_B wdx} \), \(B \) a ball in \(E^n \) with center \(x_0 \). A lemma constructing such functions is presented from which it follows that if \(n = 1 \) and the weight function \(w \) is continuously differentiable but is not an eigenfunction of the 1-dimensional Laplace operator, then \(u \) is constant. It is also shown that if \(w \) is integrable on \(E^n \) and \(u \) is bounded above or below, \(u \) is constant.

Let \(D \) be a region in \(n \)-dimensional Euclidean space \(E^n \). Following A. K. Bose [1] we say a weight function on \(D \) is a nonnegative, locally integrable function on \(D \) whose integral over any closed ball lying in \(D \) is positive.

A real valued function \(u \) has the weighted average property with respect to the weight function \(w \) on \(D \) if \(uw \) is locally integrable on \(D \) and, for every closed ball \(B \) lying in \(D \) with center at \(x_0 \), \(u(x_0) = \frac{\int_B uwdx}{\int_B wdx} \). We denote by \(S(w, D) \) the collection of functions satisfying the weighted average property with respect to \(w \) in \(D \). \(S(w, D) \) is a real vector space containing the constants.

Bose has shown in [1], [2] and [3]:

(i) If \(w > 1 \) and \(w \) is an eigenfunction of the Laplace operator \(\Delta \), then the dimension, \(\dim S(w, D) \), of \(S(w, D) \) is \(\infty \).

(ii) If \(n = 2 \), \(w \) is in \(C^1(D) \), and \(w \) is not an eigenfunction of \(\Delta \), then \(1 \leq \dim S(w, D) \leq 2 \).

(iii) For \(n > 2 \), there is a weight function \(w \) on \(E^n \) which is not an eigenfunction of \(\Delta \) but for which \(\dim S(w, E^n) = \infty \).

(iv) If \(w \) is a bounded continuous weight function on \(E^n \) with a positive lower bound and \(u \) is a bounded function satisfying the weighted average property with respect to \(w \), then \(u \) is constant.

I prove in this note:

Theorem 1. If \(D \) is an interval in \(E^1 \) and if \(w \) is a weight function belonging to \(C^1(D) \) which is not an eigenfunction of the 1-dimensional...
Laplace operator, then \(S(w, D) \) contains only the constants.

Theorem 2. If \(w \) is a weight function integrable over \(E^n \), \(u \) is in \(S(w, E^n) \), and \(u \) is bounded either above or below, then \(u \) is constant.

The proof of Theorem 1 is based on the following;

Lemma. Let \(w_1(x) \) be a weight function on \(D_1 \subseteq E^n \), \(w_2(y) \) a weight function on \(D_2 \subseteq E^n \), \(u_1(x) \in S(w_1, D_1) \), and \(u_2(y) \in S(w_2, D_2) \). Then \(u(x, y) = u_1(x)u_2(y) \) belongs to \(S(w, D_1 \times D_2) \), where \(w(x, y) = w_1(x)w_2(y) \).

Proof. It is clear that \(w \) is a weight function and \(uw \) is locally integrable on \(D_1 \times D_2 \). For \(x \) in \(E^n \), \(0 < r < s \), we denote by \(B(x, r) \) the closed ball centered at \(x \) of radius \(r \), and by \(A(x, r, s) \) the closed annulus centered at \(x \) of radii \(r \) and \(s \). Suppose \((x_0, y_0) \in D_1 \times D_2 \), and \(r > 0 \) such that \(B((x_0, y_0), r) \subseteq D_1 \times D_2 \). For positive integers \(m \) and \(p \) with \(1 \leq p \leq 2m - 1 \), let

\[
 r_{m,p} = r(1 - p^2/2^{2m})^{1/2},
\]

\[
 C(m, p) = B(x_0, r_{m,p}) \times A(y_0, (p - 1)r/2^m, pr/2^w),
\]

and

\[
 S_m = \bigcup_p C(m, p).
\]

The following three statements follow from tedious but straightforward calculations:

(a) The \((\alpha + \beta)\)-Lebesgue measure of \(C(m, p) \cap C(m, q) \) is zero for \(p \neq q \).

(b) \(S(m) \subseteq S(m+1), m \geq 1 \).

(c) Interior \(B((x_0, y_0), r) \subseteq U_mS(m) \subseteq B((x_0, y_0), r) \).

It is easily seen that

\[
 u_2(y_0) \int_{A(y_0, s, t)} w_2 = \int_{A(y_0, s, t)} u_2w_2 \quad \text{whenever} \quad B(y_0, t) \subseteq R_2.
\]

Thus, from Fubini’s Theorem,

\[
 u(x_0, y_0) \int_{C(m, p)} w = \int_{C(m, p)} uw \quad \text{for all} \quad m, 1 \leq p \leq 2^m - 1.
\]

From (a) it follows that \(u(x_0, y_0)\int_{S(m)} w = \int_{S(m)} uw \). Statement (b) allows us to take limits as \(m \to \infty \), and using (c) also, we obtain

\[
 u(x_0, y_0) \int_{B((x_0, y_0), r)} w = \int_{B((x_0, y_0), r)} uw
\]

which completes the proof.
Proof of Theorem 1. Suppose \(u \in S(w, D) \) and \(u \) is not constant. Let \(w_2 \equiv 1 \) on \(E^1 \). Then \(w(x)w_2(y) \) is in \(C^1(D \times E^1) \) and is not an eigenfunction of \(\Delta \). Further, \(u_2(y) = y \) is in \(S(w_2, E^2) \). Thus, by the lemma, each of \(u(x) \), \(u_2(y) \), and \(1 \) is in \(S(w(x)w_2(y), D \times E^1) \), and since these functions are linearly independent, Bose's result (ii) is contradicted.

We note that the following statement also follows easily from the lemma to Theorem 1:

If \(D \subseteq E^n \), \(n > 2 \), and \(w \) is a weight function on \(D \) independent of two of the variables, then \(S(w, D) = \infty \).

The author is indebted to the referee for the following proof of Theorem 2, which is shorter than the original.

Proof of Theorem 2. Suppose \(u \in S(w, E^n) \) and \(u \) is bounded below. Let \(K > 0 \) such that \(v = u + K \) is positive. Then \(v \in S(w, E^n) \) and, for \(y \in E^n \), \(R > 0 \), \(\int_{B(y, R)} v(x)w(x)dx = v(y)\int_{B(y, R)} w(x)dx \). Since \(w \) is integrable on \(E^n \), \(vw \) is integrable on \(E^n \), and, letting \(R \to \infty \), \(v(y) = \int v(x)w(x)dx/\int w(x)dx \), the integrals taken over all of \(E^n \). Thus \(v \) is constant, so \(u \) is constant. If \(u \) is bounded above, consider \(-u\).

References

College of William and Mary