Fatou’s lemma in several dimensions
HTML articles powered by AMS MathViewer
- by David Schmeidler
- Proc. Amer. Math. Soc. 24 (1970), 300-306
- DOI: https://doi.org/10.1090/S0002-9939-1970-0248316-7
- PDF | Request permission
Abstract:
In this note the following generalization of Fatou’s lemma is proved: Lemma. Let $({f_n})_{n - 1}^\infty$ be a sequence of integrable functions on a measure space $S$ with values in $R_ + ^d$, the nonnegative orthant of a $d$-dimensional Euclidean space, for which $\int {{f_n} \to a \in R_ + ^d}$. Then there exists an integrable function $f$, from $S$ to $R_ + ^d$, such that a.e. $f(s)$ is a limit point of $({f_n}(s))_{n - 1}^\infty$ and $\int {f \leqq a}$.References
- K. J. Arrow, E. W. Barankin, and D. Blackwell, Admissible points of convex sets, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N.J., 1953, pp. 87–91. MR 0054919
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- Gerard Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252 W. Hildenbrand, Existences of a quasi-equilibrium for an economy with production and measure space of consumers (to appear).
- Hans Richter, Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, Math. Ann. 150 (1963), 85–90 (German). MR 146329, DOI 10.1007/BF01396583
- David Schmeidler, Competitive equilibria in markets with a continuum of traders and incomplete preferences, Econometrica 37 (1969), 578–585. MR 269283, DOI 10.2307/1910435
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 300-306
- MSC: Primary 28.25
- DOI: https://doi.org/10.1090/S0002-9939-1970-0248316-7
- MathSciNet review: 0248316