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Introduction and definitions. Nearly reducible and nearly decom-

posable matrices have been discussed in [4], [5], and [6]. Results in

these papers were obtained by using a canonical form for these ma-

trices. In this paper we give a simplification of this canonical form.

It is then shown that the main result in [5], a major result in [4]

and a result in [2 ] as well as other properties of nearly reducible and

nearly decomposable matrices are more easily obtained.

In the paper the following definitions concerning matrix theory are

used.

An nXn matrix A is said to be reducible if there exists a permuta-

tion matrix P so that

(B    0\PlAP = ( )

\C    D)

where B and D are square. Otherwise A is said to be irreducible.

E^ is the nXn matrix which has a one in the (i, j) position and O's

elsewhere. If A is irreducible and for each an7*0, A—a,jEij is re-

ducible, then A is said to be nearly reducible. An nXn matrix A is

said to be partly decomposable if there exist permutation matrices

P and Q so that

/B    0\

PAQ-{c d)

where B and D are square. If no such P and Q exist, the matrix is

said to be fully indecomposable. If A is fully indecomposable and

for each a,j7*0, A — anEij is partly decomposable, then A is said to

be nearly decomposable. A is said to have a positive diagonal if there

exist positive entries ai„a), 02,(2). • • • i an„M where a is a permutation

of 1, 2, • • • , n. An entry a,j is said to lie on this positive diagonal

if a(i)=j. If ailh, ailh, a,2,-2, • • • , a,-my„ = ailh are distinct nonzero

elements in A, then A is said to have a loop.

The following definitions concerning graph theory are used in the

paper.

A graph G is said to be strongly connected if for each pair of dis-

tinct vertices x and y, there is a path from x to y. If a graph is
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strongly connected and with the removal of any arc it loses this

property, the graph is called minimally connected. An nXn (0, 1)-

matrix A = (a<y) is said to be associated with a graph G having ver-

tices Xi, x2, x3, • • • , xn if and only if for each ay = 1, we have an arc

from the vertex Xi to the vertex Xj. If G is a strongly connected graph

then each vertex lies on an elementary circuit. If an elementary cir-

cuit contains all the vertices of the graph then it is called a full ele-

mentary circuit. If A is a subgraph of the graph G, then we shrink A

by deleting the arcs connecting any two vertices of A, and by identi-

fying all vertices of A with a single one of the vertices. It is easily

shown that if G is a minimally connected graph, then each elementary

circuit is a subgraph of G, hence for these graphs we may shrink

elementary circuits.

The importance of the paper is in the following theorem concerning

the form of nearly reducible and nearly decomposable matrices. The

proof will be given later.

Theorem *. Suppose A is an nXn nearly decomposable [nearly

reducible] (0, l)-matrix with n>l. Then there exist permutation ma-

trices P and Q [a permutation matrix P] and an integer s>l so that

Ai      0       • • ■    0 Pi

E2       A2    ■ ■ ■    0 0
PAQ

iP'AP) "
0 0       •••    4,_x   0

.0 0       • • •    E,       A,,

where each P,- has exactly one entry equal to one and each Ai is nearly

decomposable [nearly reducible]. Further Ai, A2, • • ■ , As-i are all 1X1.

This is a simplified form for nearly decomposable [nearly reduc-

ible] matrices in the sense that the previous form for nearly decom-

posable [nearly reducible] matrices (see [4], [5]) did not assert

Ai, A2, ■ • ■ , A.-i to be 1X1.

Results and consequences. We exhibit two theorems concerning

nearly decomposable matrices. The first is a slight improvement of

that of Sinkhorn in [4]. For this we include the following lemma.

Lemma. // A is a fully indecomposable (0, l)-matrix, then each posi-

tive entry lies on a positive diagonal. If any 0 entry is replaced by 1

then this 1 lies on a positive diagonal. iSee [4, p. 199].)

Theorem 1. If A is a nearly decomposable (0, l)-matrix and if A
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has m rows with three ones in it and n — m rows with two ones in it then

per A^m + 2. [in [4] Sinkhorn proved per A^m.]

Proof. The proof is by induction on the dimension of A. If A is

2 X2 it is obvious since A must be

C!>
Suppose the theorem holds for all nearly decomposable matrices of

dimension k where 2^k^n — l. Now suppose A is an nXn nearly

decomposable (0, l)-matrix. We may assume it has the following

form

1      0 • • • 0      Ei

1      1 • • • 0      0

0     0 • • • 1      0

0     0 • • • A,    A,,

where s> 1. If A. is one by one, the theorem holds. If A, is not 1X1

then since A, satisfies the induction hypothesis per Ae^(m —1)4-2

= m-\-l. Since the one in Ex lies on a positive diagonal we have

per A ^im-T-2.

Let An denote the set of all nXn matrices having exactly three ones

in each row and column. Sinkhorn [4] has shown that if vl£A„ then

per A^n and that the minimum occurs on a fully indecomposable

matrix. In [2] Brualdi and Newman have shown that if ^4£A„ is a

circulant matrix then per A ^n-\-3. We show in fact that this is al-

ways the case.

Theorem 2. If A £A„ then per A ^n4-3.

Proof. By the above remarks we need only prove the theorem

when A is fully indecomposable. If a certain set of l's in A, k in num-

ber, are replaced by 0's there results a nearly decomposable matrix

A' having at least two l's in each row and column. We list two cases:

Case I. k = 2. In this case we may suppose

\E2    A J

By Theorem 1 we have per A'^n. By replacing two 0's in A' by l's

to yield A we see by the lemma that each of these l's is individually

on a positive diagonal and that they share a positive diagonal, hence

per A S:«-f-3.
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Case II. k>2. Since A' is fully indecomposable we may assume it

has a positive main diagonal. Hence we may view .4 =/-f-Pi+P2

where I is the identity matrix and Pi, P2 permutation matrices. From

this we see that when the k l's were replaced by O's, at least two of

these were from Pi or P2. Now by Theorem 1 per A'^in — k)+2.

By replacing the k O's in A' by l's to yield A we see from the lemma

and the fact that at least two of these l's share a diagonal, that

per A ^ [in - k) + 2] 4- k + 1 = n + 3.

We now exhibit two theorems concerning nearly reducible ma-

trices. Theorem 3 is not found in the literature. We include it to

show that the proof using the simplified form is simpler than that

needed if this form were not known.

Theorem 3. If A is a nearly reducible (0, l)-matrix, then A does not

have any loops.

Proof. The proof is by induction on the dimension n of A. By

inspection, the theorem holds for nE {1, 2}. Suppose the theorem is

true for all nearly reducible (0, l)-matrices A of dimension k; l^k

2£» —1. Now let A be a nearly reducible (0, l)-matrix of dimension

n. We may assume A has the form

0 0 ■ • • 0     0     Pi

1 0 ••• 0     0     0

0     0 ••• 1      0      0

.0     0 • • ■ 0     E.   As

where s>l. Since by the induction hypothesis A3 has no loops we

see that the theorem follows.

Finally we prove a theorem which is the major result in [5].

Theorem 4. If A is nearly reducible and doubly stochastic then A

is a full cycle permutation matrix.

Proof. We may suppose that A has the form

0 0 ••• 0     Ei

1 0 ••• 0     0

0     0 ••• 0     0

0     0 • • • E.   At,
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where s>l. Since Ai has a one in it we see that A, has a column of

0's. Hence A, = (0) and so A is a full cycle permutation matrix.

We conclude the paper with the proof of Theorem *.

Proof. First we show that a nearly reducible matrix A has the

stated form. The following lemma is used.

Lemma. A is irreducible if and only if the graph of A is strongly

connected [7, p. 20].

From the lemma we see that the graph G associated with A is

minimally connected. We now include a lemma concerning mini-

mally connected graphs.

Lemma. In a minimally connected graph G, let A be a set of vertices

determining a strongly connected subgraph; the shrink of A leads to a

minimally connected graph [l, p. 123].

Select some vertex vt of G. If it is on a full elementary circuit

then we are through. If not take some elementary circuit which con-

tains Vi and shrink it. Call this graph G\. Suppose that the elementary

circuit shrank to v{ of Gi, If v( is not on a full elementary circuit of

Gi, then take some elementary circuit it is on and shrink it. Call this

graph G2. After m shrinkings like this we get a graph of a full ele-

mentary circuit. Call this graph Gm. By construction we see that if

I vertices of G shrank to 1 vertex of Gm, then the remaining n — (

vertices were never shrunk.

G Gmm

(7s)     (

v
It is easily seen that the subgraph of the set of vertices which was

shrunk into the one vertex is a minimally connected graph.
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From this we know that there exists a permutation matrix P so

that P'AP has the form mentioned in Theorem * for nearly reduc-

ible matrices.

We now show that a nearly decomposable matrix may be reduced

to the stated form. If A is nearly decomposable, take permutation

matrices P and Q such that PAQ = A has a positive main diagonal.

Lemma. Let A be an nXn matrix. Then A is fully indecomposable if

and only if there exists permutation matrices P and Q such that PAQ

has a positive main diagonal and is irreducible [3, p. 33].

From this lemma we see that A — I is nearly reducible. Hence there

exists a permutation matrix R so that RiA —I)Rl has the form stated

in Theorem * for nearly reducible matrices. Hence RAR' has the form

Ai      0      ■••   0 Pi

P2       Ai   ■ ■ ■   0 0

0 0      • • •   4,_!   0

0 0      • • •   E.       A.,

where s> 1. Each Ak is now fully indecomposable by the above lemma.

Lemma. Suppose A is an nXn nearly decomposable (0, l)-matrix

having the above form where each Ak is fully indecomposable. Then

each Ak is nearly decomposable [6, p. 69].

From this lemma we see that a nearly decomposable matrix may

be reduced to the form stated in Theorem *.
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