SHORTER NOTE

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

AN INEQUALITY FOR RATIONAL FUNCTIONS

HAROLD WIDOM

Abstract. An inequality of A. A. Gončar concerning the relative sizes of rational functions on different sets is reinterpreted. This allows a very simple proof of a more general inequality.

A. A. Gončar [1] proved the following: Let G be a doubly connected domain in the Riemann sphere bounded by continua E_1 and E_2. Then if r is any rational function of degree (number of poles) n, one has

$$\min_{z \in E_2} |r(z)| \leq \rho^n \max_{z \in E_1} |r(z)|$$

where ρ is the modulus of the domain G. (This means that G is conformally equivalent to the annulus $1 < |z| < \rho$.)

In this note we present a simple proof of the generalization of this inequality to arbitrary disjoint closed sets E_1 and E_2 of positive (logarithmic) capacity.

Let $g(z, \xi)$ denote Green's function for the complement of E_1 and define $1/\log \rho$ to be the capacity of E_2 relative to this kernel. Thus $1/\log \rho$ is the maximum of $\mu(E_2)$ for all nonnegative Borel measures μ on E_2 satisfying

$$\int g(z, \xi) d\mu(z) \leq 1, \quad \xi \in E_1.$$

It is a fact, not difficult to prove, that ρ is unchanged if the roles of E_1 and E_2 are interchanged. In case E_1 and E_2 bound a doubly connected domain G then ρ as just defined is the modulus of G [2, pp. 96–97].

Received by the editors July 28, 1969.

AMS Subject Classifications. Primary 3009; Secondary 3041.

Key Words. Rational functions, Green's function, Capacity, Maximum principle.

1 Supported by Air Force Grant AFOSR-69-1638 at the University of California, Santa Cruz.
We shall show that (1) holds in the general case. We may assume that the maximum appearing on the right side of (1) is 1. If r has poles at ξ_1, \ldots, ξ_n then

$$\log |r(z)| - \sum_{k=1}^{n} g(z, \xi_k)$$

is subharmonic in the complement of E_1 and has lim sup at most 0 at each point of E_1. Therefore by the maximum principle for subharmonic functions

$$\log |r(z)| \leq \sum_{k=1}^{n} g(z, \xi_k) \quad z \in E_1.$$

Now let μ be any measure on E_2 satisfying (2). Then

$$\mu(E_2) \min_{z \in E_2} \log |r(z)| \leq \sum_{k=1}^{n} \int g(z, \xi_k) d\mu(z) \leq n,$$

and (1) follows immediately from the definition of μ.

It can be shown [3] that the constant ρ appearing on the right side of (1) is best possible.

References

University of California, Santa Cruz