Annulus conjecture and stability of homeomorphisms in infinite-dimensional normed linear spaces
HTML articles powered by AMS MathViewer
- by R. A. McCoy
- Proc. Amer. Math. Soc. 24 (1970), 272-277
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256419-6
- PDF | Request permission
Abstract:
If $E$ is an arbitrary infinite-dimensional normed linear space, it is shown that if all homeomorphisms of $E$ onto itself are stable, then the annulus conjecture is true for $E$. As a result, this confirms that the annulus conjecture for Hilbert space is true. A partial converse is that for those spaces $E$ which have some hyperplane homeomorphic to $E$, if the annulus conjecture is true for $E$ and if all homeomorphisms of $E$ onto itself are isotopic to the identity, then all homeomorphisms of $E$ onto itself are stable.References
- R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515–519. MR 190888, DOI 10.1090/S0002-9904-1966-11524-0
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041
- Morton Brown and Herman Gluck, Stable structures on manifolds. I. Homeomorphisms of $S^{n}$, Ann. of Math. (2) 79 (1964), 1–17. MR 158383, DOI 10.2307/1970481
- M. I. Kadec, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Funkcional. Anal. i Priložen. 1 (1967), 61–70 (Russian). MR 0209804
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- V. L. Klee Jr., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673–674. MR 78661, DOI 10.1090/S0002-9939-1956-0078661-2
- R. A. McCoy, Cells and cellularity in infinite-dimensional normed linear spaces, Trans. Amer. Math. Soc. 176 (1973), 401–410. MR 383419, DOI 10.1090/S0002-9947-1973-0383419-5
- D. E. Sanderson, An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc. 148 (1970), 33–39. MR 259957, DOI 10.1090/S0002-9947-1970-0259957-X
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488. MR 149457
- Raymond Y. T. Wong, On homeomorphisms of certain infinite dimensional spaces, Trans. Amer. Math. Soc. 128 (1967), 148–154. MR 214040, DOI 10.1090/S0002-9947-1967-0214040-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 272-277
- MSC: Primary 57.55; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256419-6
- MathSciNet review: 0256419