A RESULT OF BASS ON CYCLOTOMIC
EXTENSION FIELDS

JOHN H. SMITH

In [1] Bass stated the result given below as Proposition 1 and
derived some consequences. His proof of the proposition itself, how-
ever, contains a gap; Lemmas 2 and 3 are false as stated. The purpose
of this note is to fill the gap by proving the slightly stronger Proposition
2.

We retain the notation of [1]. In particular \(k_m = k(\zeta_m) \) where
\(\zeta_m = e^{2\pi i/m} \). The letters \(m, n, a, b, c, d, r, s, t, u, v \) will denote nonnega-
tive integers, \(p \) is a prime integer, and \(K = k(i) \).

Proposition 1. Given \(k \) and \(n \), there is an \(m \) such that \(k_m \cap k \supseteq k^n \).

Proposition 2. Given \(k \) there is an \(m \) such that for all \(n \), \(k_m \cap k \supseteq k^n \).

Lemma 1. Suppose \(\zeta_p \in k \) if \(p = 2 \). Then if \(r = p^a \), \(k_r \cap k \supseteq k^r \). (For
proof see p. 39 of [2].)

Lemma 2. Given \(p \) and \(k \) with \(\zeta_p \in k \) if \(p = 2 \), suppose \(r = p^a \) and \(v \) are
such that \(t^v \in k \). Then for all \(t = p^c \), \(k_v \cap k \supseteq k^v \).

Proof. If \(c = 0 \) the result is trivial; assume \(c > 0 \).

Case 1. \(\zeta_p \in k \) or \(\zeta_p \in k_v \).

For any \(u = p^d, d \geq 0 \), any \(r \)th power, \(z \in k \) of an element in \(k_r \)
is a \(p \)th power of an element in \(k_r \). If not, \(X^r - z \) would be irreducible
over \(k \) [3, p. 221], hence all its roots would lie in \(k_v \), which is normal
over \(k \), hence \(\zeta_r \in k_v \), contrary to supposition.

Therefore, if \(x = y^t, x \in k, y \in k_r \), then \(x = w^p, w \in k \), and \(w^{-1}y^t \) is
a \(p \)th root of 1 in \(k_v \), hence in \(k \), and \(y^t \in k \). Repeating the argument
if necessary we conclude, \(y^t \in k \), \(x = y^t \in k \).

Case 2. \(\zeta_p \in k \), \(\zeta_p \in k_v \).

If \(x \in k \) is an \(r \)th power of something in \(k_r \) then by Case 1, \(x \) is a
\(t \)th power of something in \(k_r \). Taking norms from \(k_p \) to \(k \)
and noting that \([k_p : k] \) is prime to \(t \) gives the result.

Lemma 3. Let \(s = 2^b \) be such that \(\zeta_{2^b} \in K \). Then for any \(t = 2^c \),
\(K^{2^b} \cap k \supseteq k^t \).

Received by the editors February 3, 1969.

1 Part of this work was done at a National Science Foundation Advanced Science
Seminar at Bowdoin College, Summer, 1968.

394
Proof (Following [2]). Let \(x = y^u, x \in \mathbb{k}^*, y \in \mathbb{K}^* \). If \(y \in \mathbb{k}^* \) there is nothing to prove, so assume \(u = 2^d \) such that \(y^u \in \mathbb{k}^*, y^{2u} \in \mathbb{k}^* \). Then \(y^u = iz, z \in \mathbb{k}^* \) and if \(\sigma \) denotes conjugation over \(k, (y^{-1}y^\sigma)^u = -1 \). Hence \(u < s, y^u \in \mathbb{k}^*, x = y^u \in \mathbb{k}^{*t} \).

We are now ready to prove Proposition 2. For all ramified odd \(p \) let \(a_p \) denote one plus the exponent of \(p \) in the ramification degree, from \(\mathbb{Q} \) to \(\mathbb{k} \), of some prime dividing \(p \); for unramified odd \(p \) let \(a_p = 0 \), and let \(a_2 \) be one plus the exponent of 2 in the ramification degree, from \(\mathbb{Q} \) to \(\mathbb{K} \), of some prime dividing 2. Let \(r_p = p^{a_p} \). Then for all \(p \) and \(v \) prime to \(p \), \(\zeta_{p^v} \in \mathbb{k}^v \), in fact \(\zeta_{p^v} \in \mathbb{K}^v \). Let \(s_p = r_p \) for \(p \) odd and \(s_2 = r_2^2 \), and let \(m = \prod s_p \). Then for any \(n = \prod t_p, t_p = p^{c_p} \), letting \(u_p = s_p t_p \),

\[
\mathbb{k}^{*mn} \cap \mathbb{k}^* = \left(\bigcap_p \mathbb{k}^{*u_p} \right) \cap \mathbb{k}^*
\subset \left(\bigcap_{p
eq 2} \mathbb{k}^{*u_p} \right) \cap \left(\mathbb{k}^{*u_2} \cap \mathbb{k}^{*u_2/u_2} \right) \cap \mathbb{k}^* \tag{by Lemma 1}
\subset \left(\bigcap_{p
eq 2} \mathbb{k}^{*u_p} \right) \cap \left(\mathbb{k}^{*u_2} \cap \mathbb{k}^{*u_2/u_2} \right) \cap \mathbb{k}^* \tag{by Lemma 2}
\subset \bigcap_{p \neq 2} \mathbb{k}^{*u_p} \cap \mathbb{k}^{*u_p} \cap \mathbb{k}^* \tag{by Lemma 3}.
\]

Proposition 3. If \(E = 2D_{\mathbb{k}/\mathbb{Q}} \), then \(\bigcap \mathbb{k}^{*E} = \{1\} \).

Proof. \(k \) contains no nontrivial roots of unity of order prime to \(E \). Hence if \(x \in \mathbb{k}^*, x \neq 1, x \in \mathbb{k}^{*s} \) for some \(s = E^b \). The only odd primes in the \(m \) of Proposition 2 are ramified ones, hence \(m \mid t \) for some \(t = E^c \). Then \(x \in \mathbb{k}^{*t} \cap \mathbb{k}^* \subset \mathbb{k}^{*t/m} \subset \mathbb{k}^{*s} \).

References