A RESULT OF BASS ON CYCLOTOMIC EXTENSION FIELDS

JOHN H. SMITH

In [1] Bass stated the result given below as Proposition 1 and derived some consequences. His proof of the proposition itself, however, contains a gap; Lemmas 2 and 3 are false as stated. The purpose of this note is to fill the gap by proving the slightly stronger Proposition 2.

We retain the notation of [1]. In particular $k_m = k(\zeta_m)$ where $\zeta_m = e^{2\pi i/m}$. The letters $m, n, a, b, c, d, r, s, t, u, v$ will denote nonnegative integers, p is a prime integer, and $K = k(i)$.

Proposition 1. Given k and n, there is an m such that $k_m^* \cap k^* \subset k^*$.

Proposition 2. Given k there is an m such that for all n, $k_m^* \cap k^* \subset k^*$.

Lemma 1. Suppose $\zeta \in k$ if $p = 2$. Then if $r = p^a$, $k_r^* \cap k^* \subset k^*$. (For proof see p. 39 of [2].)

Lemma 2. Given p and k with $\zeta \in k$ if $p = 2$, suppose $r = p^a$ and v are such that $t^{pr} \in k_v$. Then for all $t = p^c$, $k_r^* \cap k^* \subset k^*$.

Proof. If $c = 0$ the result is trivial; assume $c > 0$.

Case 1. $\zeta_p \in k$ or $\zeta_p \notin k_v$.

For any $u = p^d$, $d > 0$, any rth power, $z \in k^*$ of an element in k_v^* is a pth power of an element in k_v^*. If not, $X^{ru} - z$ would be irreducible over k [3, p. 221], hence all its roots would lie in k_v, which is normal over k, hence $\zeta_u \notin k_v$, contrary to supposition.

Therefore, if $x = y^r, x \in k$, $y \in k_v^*$, then $x = w^p, w \in k_v^*$, and $w^{-1} y^{r/p}$ is a pth root of 1 in k_v, hence in k, and $y^{r/p} \in k$. Repeating the argument if necessary we conclude, $y^r \in k_v^*, x = y^r \in k_v^*$.

Case 2. $\zeta_p \notin k, \zeta_p \in k_v$.

If $x \in k$ is an rth power of something in k_v, then by Case 1, x is a tth power of something in $k_v \subset k_v$. Taking norms from k_v to k and noting that $[k_p : k]$ is prime to t gives the result.

Lemma 3. Let $s = 2^b$ be such that $\zeta_{2^b} \notin K$. Then for any $t = 2^c$, $K^* \cap k^* \subset k^*$.

Received by the editors February 3, 1969.

1 Part of this work was done at a National Science Foundation Advanced Science Seminar at Bowdoin College, Summer, 1968.
Proof (Following [2]). Let \(x = y^{st}, x \in k^*, y \in K^* \). If \(y \in k^* \) there is nothing to prove, so assume \(u = 2^d \) such that \(y^u \in k^*, y^{2u} \in k^* \). Then \(y^u = iz, z \in k^* \) and if \(\sigma \) denotes conjugation over \(k \), \((y^{-1}y^\sigma)^u = -1 \). Hence \(u < s, y^u \in k^* \), \(x = y^{st} \in k^{st} \).

We are now ready to prove Proposition 2. For all ramified odd \(p \) let \(a_p \) denote one plus the exponent of \(p \) in the ramification degree, from \(Q \) to \(k \), of some prime dividing \(p \); for unramified odd \(p \) let \(a_p = 0 \), and let \(a_2 \) be one plus the exponent of 2 in the ramification degree, from \(Q \) to \(K \), of some prime dividing 2. Let \(r_p = p^{-a_p} \). Then for all \(p \) and \(v \) prime to \(p \), \(\zeta_{pr_p} \in K_v \), in fact \(\zeta_{s_{pr_p}} \in K_v \). Let \(s_p = r_p \) for \(p \) odd and \(s_2 = r_2^2 \), and let \(m = \prod s_p \). Then for any \(n = \Pi t_p, t_p = p^{-a_p} \), letting \(u_p = s_p t_p \),

\[
\begin{align*}
k^{*n} \cap k^* & = \left(\bigcap_p k^{*n/p} \right) \cap k^* \\
& \subseteq \left(\bigcap_{p \neq 2} k^{*n/p}_m \cap k^{*n/u_p} \right) \cap (K^{*u_2}_m \cap K_{mn/u_2}) \cap k^* \\
& \subseteq \left(\bigcap_{p \neq 2} k^{*n/p}_m \cap (K^{*u_2}_m) \cap k^* \right) \quad \text{(by Lemma 1)} \\
& \subseteq \left(\bigcap_{p \neq 2} k^{*n/p}_m \cap (K^{*u_2}_m) \cap k^* \right) \quad \text{(by Lemma 2)} \\
& \subseteq \bigcap_{p} (k^{*n/p}_m) = k^{*n} \quad \text{(by Lemma 3)}.
\end{align*}
\]

Proposition 3. If \(E = 2D_{k/Q} \), then \(\bigcap k^{*E_{s_{pr_p}}^r} = \{1\} \).

Proof. \(k \) contains no nontrivial roots of unity of order prime to \(E \). Hence if \(x \in k^*, x \neq 1, x \in k^{*s} \) for some \(s = E^b \). The only odd primes in the \(m \) of Proposition 2 are ramified ones, hence \(m \mid t \) for some \(t = E^c \). Then \(x \in k^{*t} \cap k^* \subset k^{*m/l} \subset k^{*n} \).

References

Boston College