A NOTE ON MOUFANG VEBLEN-WEDDERBURN SYSTEMS

M. L. NARAYANA RAO

Abstract. The purpose of this note is to show that a Veblen-Wedderburn system with multiplicative Moufang identity is a near field if its dimension d over its kern does not exceed 7.

1. Introduction. In a recent paper [2] Kallaher investigates (left) Veblen-Wedderburn systems (and the corresponding projective planes) in which the Moufang identity

$$ (x \cdot y) \cdot (z \cdot x) = (x \cdot (y \cdot z)) \cdot x $$

holds. Such a system is called a Moufang (left) Veblen-Wedderburn system (MVW system). Fields, near fields and Cayley-Dickson algebras are examples of MVW systems. A proper MVW system is one in which the other distributive law does not hold. The only proper MVW systems known are the near fields. Kallaher [2] obtains two sets of conditions under which an MVW system is a near field. Recently the author has been able to show [3] that there are no proper finite MVW systems other than the near fields. The object of this note is to extend this result to the infinite systems of dimension $d \leq 7$ over their kerns.

2. During the course of the proof of Theorem 1 the following results are needed. Proofs of these results may be found in the references indicated.

Result 1. Every two elements of a Moufang loop generates a subgroup (di-associativity) (Bruck [1]).

Result 2. Let $F(\cdot, \cdot)$ be an MVW system with kern K. If $A(\cdot)$ is a maximal associative subloop contained in the loop $F'(\cdot)$, then $B(\cdot, \cdot)$ is a maximal near field contained in $F(+, \cdot)$ where $B = A \cup \{0\}$ and F' consists of all nonzero elements from F. Further B contains K [3, Lemmas 3.1 and 3.2].

Theorem 1. Let $F(\cdot, \cdot)$ be a left MVW system of dimension d over its kern K (as a right vector space). If $d \leq 7$, then $F(+, \cdot)$ is a near field.

Received by the editors July 10, 1969.

AMS Subject Classifications. Primary 2098, 1700; Secondary 5070.

Key Words and Phrases. Veblen-Wedderburn systems, Moufang identity, projective planes, near fields, power associativity, di-associativity, associativity.
Proof. In the course of this proof we use freely the right inverse property, left distributive law and some properties of the kern \(K \). Also we write \(ab \) in place of \(a \cdot b \). If \(d = 1 \), then \(F = K \) and the theorem is obvious. Suppose \(1 < d \leq 7 \). Let \(x \) be an element from \(F \) which does not belong to \(K \) and \(G = \langle x \rangle \) be the subloop of \(F'(\cdot) \) generated by \(x \). \(G \) is obviously an associative subloop of \(F'(\cdot) \) and consequently there exists a maximal associative subloop \(A \) in \(F'(\cdot) \) which contains \(G \). From Result 2 it follows that \(B(\cdot) \) is a maximal near field where \(B = A \cup \{0\} \). If \(B = F \), the theorem is proved. Suppose \(B < F \). Then there is an element \(y \) in \(F \) such that \(y \in B \). Let \(H = \langle x, y \rangle \), the subloop of \(F'(\cdot) \) generated by \(x \) and \(y \) (\(H \) exists since \(F'(\cdot) \) is di-associative). Let \(M \) be a maximal associative subloop of \(F'(\cdot) \) containing \(H \). Using Result 2 again we obtain that \(N(\cdot) \) is a near field where \(N = M \cup \{0\} \). We claim that \(N = F \) and consequently \(F(\cdot) \) is a near field. Suppose \(N < F \). Then there is an element \(z \) in \(F \) which does not belong to \(N \). We now show that the existence of \(z \) leads to the conclusion that the set \(T = \{1, x, y, xy, z, zx, zy, z(yx)\} \) is independent over \(K \) implying a contradiction that \(F(\cdot) \) is of dimension \(d \geq 8 \) over its kern. Firstly we show that the set \(\{1, x, y, xy\} \) is independent over \(K \). Suppose there are elements \(a, b, c \) and \(k \) in \(K \) such that \(a + xb + yc + yxk = 0 \). Then it follows that \(y(c + xk) = -(a + xb) \). Suppose \(c + xk \neq 0 \). Then \(y = -(a + xb)(c + xk)^{-1} \in B \) a contradiction to the choice of \(y \). Thus \(a + xb = 0 \) and consequently \(c + xk = 0 \) which imply that \(a = b = c = d = 0 \). Hence the set \(\{1, x, y, xy\} \) is independent over \(K \).

Suppose there are elements \(a, b, c, k, e, f, g \) and \(h \) in \(K \) such that \(a + xb + yc + yxk + ze + xzf + zyg + z(yx)h = 0 \). This relation may be rewritten as \(2X = Y \) where \(X = (e + xf + yg + yxh) \) and \(Y = -(a + xb + yc + yxk) \). Suppose \(X \neq 0 \). Then \(z = YX^{-1} \in N \) a contradiction to the choice of \(z \). Hence \(X = 0 \) and consequently \(Y = 0 \). Since the set \(\{1, x, y, xy\} \) is independent over \(K \), we obtain that \(a = b = c = k = e = f = g = h = 0 \). Thus \(T \) is an independent set over \(K \). This completes the proof of the theorem.

The question of existence of infinite proper MVW systems of dimension \(d \) over their kerns for \(d \geq 8 \) still remains unresolved.

References

University of Missouri